
© 2017 VMware Inc. All rights reserved.

kTHarbor9R��_Registry2SsG1�
Ul�jb

:Q0
VMware
*Z%
=DN?V

5"�3

• VMware��.��8#'�!<�)(�?#'>,
• Harbor +	�2��Registry;-���

• Cloud Foundry��/�&%#'�9��=

• ��*�0�
• @��:#'$�A?@7�����A
4�=

��16 @��:#'$�A @7�����A

Agenda

1 Container Image Basics

2 Project Harbor Introduction

3 Consistency of Images

4 Security

5 Image Distribution

6 High Availability of Registry

Agenda

1 Container Image Basics

2 Project Harbor Introduction

3 Consistency of Images

4 Security

5 Image Distribution

6 High Availability of Registry

Lifecycle of Containers and Images

5

Images

Containers
Stop
Start

Restart

RunCommit

Dockerfile Build

tag

tar archive

Save

Load

Push

Registry

Images

Pull

Registry

Images

6

Push Pull

• Repository for storing images
• Intermediary for shipping and distributing images
• Ideal for access control and other image management

Registry - Key Component to Manage Images

Agenda

1 Container Image Basics

2 Project Harbor Introduction

3 Consistency of Images

4 Security

5 Image Distribution

6 High Availability of Registry

Project Harbor

• An open source enterprise-class registry server.
• Initiated by VMware China, adopted by users worldwide.
• Integrated into vSphere Integrated Containers.
• Apache 2 license.
• https://github.com/vmware/harbor/

8

Key Features

• User management & access control
– RBAC: admin, developer, guest
– AD/LDAP integration

• Policy based image replication
• Vulnerability Scanning
• Notary
• Web UI
• Audit and logs
• Restful API for integration
• Lightweight and easy deployment

9

Users and Developers

200+

• Developers

• Users

2600+20K+

Downloads Stars Users

55

Contributors

700+

Forks

6

Partners

10

Harbor Architecture

11

Docker
client

Nginx

API

Harbor

Browser
Auth

UI

DB

AD /
LDAP

Core
Service

Log
Collector

Replication
Job

Services

Notary
client

Remote
Harbor

Instance

Notary

Registry V2

Vulnerability
Scanning

Admin
Service

Harbor users and partners (selected)

12

Image replication (synchronization)

13

Project

Images

Policy

Image

Project

Images
Initial replication

Image
incremental replication

(including image deletion)

Agenda

1 Container Image Basics

2 Project Harbor Introduction

3 Consistency of Images

4 Security

5 Image Distribution

6 High Availability of Registry

Consistency of Container Images

• Container images are used throughout the life cycle of
software development
– Dev
– Test
– Staging
– Production

• Consistency must be maintained
– Version control
– Issue tracking
– Troubleshooting
– Auditing

15

Same Dockerfile Always Builds Same Image?

• Base image ubuntu:latest could be changed between builds
• ubuntu:14.04 could also be changed due to patching
• apt-get (curl, wget..) cannot guarantee always to install the

same packages
• ADD depends on the build time environment to add files

16

Example:
FROM ubuntu

RUN apt-get install –y python

ADD app.jar /myapp/app.jar

Shipping Images in Binary Format for Consistency

17

. .

. .

.
.
.

.

.
.

.

.

.
.

Agenda

1 Container Image Basics

2 Project Harbor Introduction

3 Consistency of Images

4 Security

5 Image Distribution

6 High Availability of Registry

Access Control to Images

• Organizations often keep images within their own organizations
– Intellectual property stays in organization
– Efficiency: LAN vs WAN

• People with different roles should have different access
– Developer – Read/Write
– Tester – Read Only

• Different rules should be enforced in different environments
– Dev/test env – many people can access
– Production – a limited number of people can access

• Can be integrated with internal user management system
– LDAP/Active Directory

19

Example: Role Based Access Control in Harbor

20

Project

Members Images

Guest:

Developer:

Admin:

${Project}/ubuntu:14.04
${Project}/nginx:1.8, 1.9
${Project}/golang:1.6.2
${Project}/redis:3.0

…...

docker pull ...

docker pull/push ...

Other security considerations

• Enable content trust by installing Notary service
– Image is signed by publisher’s private key during pushing
– Image is pulled using digest

• Perform vulnerability scanning
– Prevent images with vulnerabilities from being pulled
– Regular scanning based on updated vulnerability database

21

Content trust for image provenance

Registry

Notary

Image Creator Image Consumer

Vulnerability Scanning

• Static analysis of vulnerability by inspecting filesystem of
container image and indexing features in database.

• Rescanning is needed only and only if new detectors are
added.

• Update vulnerability data regularly
- Debian Security Bug Tracker
- Ubuntu CVE Tracker
- Red Hat Security Data
- Oracle Linux Security Data
- Alpine SecDB

24

Vulnerability scanning
Set vulnerability threshold
Prevent images from being pulled if they exceed threshold
Periodic scanning based on updated vulnerability database

Registry – Image Vulnerability Scanning

Agenda

1 Container Image Basics

2 Project Harbor Introduction

3 Consistency of Images

4 Security

5 Image Distribution

6 High Availability of Registry

Image Distribution

• Container images are usually distributed from a registry.
• Registry becomes the bottleneck for a large cluster of nodes

– I/O
– Network

• Scaling out an registry server
– Multiple instances of registry sharing same storage
– Multiple instances of independent registry sharing no storage

26

Image Distribution via Master-Slave Replication

27. . .

Docker
Client

Docker
host

Docker
host

Docker
host

Docker
host

Docker
host

Docker
host

•
• . .

. .

Hierarchical Image Distribution

28

.

Docker
Client

Agenda

1 Container Image Basics

2 Project Harbor Introduction

3 Consistency of Images

4 Security

5 Image Distribution

6 High Availability of Registry

High Availability of Registry

• To remove single point of failure on registry
• Three models to achieve HA

– Shared storage
– Replication (no shared storage)
– Using other HA platform

30

. .

. .

. .

Registries using Shared Storage

Image replication between registries

32

. .

VMware ESXi-1

Docker Volume Driver for
vSphere

VMware ESXi-2

Docker Volume Driver for
vSphere

VMware ESXi-3

Docker Volume Driver for
vSphere

Shared Storage

Virtual SAN

Docker Volume -1

Docker Host VM

Harbor

vSphere Docker Volume
Plugin

Docker Volume -2 Docker Volume-3 Other Docker
Volume s

Registry HA on vSphere
• Registry in a VM protected by vSphere
• Image storage by VSAN Docker Volume

VMware ESXi-1

Docker Volume Driver for
vSphere

VMware ESXi-2

Docker Volume Driver for
vSphere

VMware ESXi-3

Docker Volume Driver for
vSphere

Shared Storage

Virtual SAN

Docker Volume -1

Docker Host VM

Harbor

vSphere Docker Volume
Plugin

Docker Volume -2 Docker Volume-3 Other Docker
Volume s

Registry HA on vSphere

Docker Host VM

Harbor

vSphere Docker Volume
PluginX

• VM failed over to a healthy host
• Image storage still connected by VSAN

Summary

• Container image is the static part of container
lifecycle

• Registry is the key component to manage images
• Organizations usually need a private registry

– Security
– Efficiency

35

Harbor9RpWM-;HP

• @U�(A!�>qKHarbor9RpW
v1.1+UX2TB

• H]8�Harborl��7U�TO��
ar���e�`^IoU
HH]�
1000/���

• • H]nh+201763L1J�)+c�
�9%f��.DNi,�	�"3�
<���'^5&�

• H]>q�4X2��K$�d#��
�[Eg�

• \�CY$�

Fm

Thank you!

https://github.com/vmware/harbor

