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Lifecycle of Containers and Images
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Registry

Images
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Push Pull

• Repository for storing images
• Intermediary for shipping and distributing images
• Ideal for access control and other image management

Registry - Key Component to Manage Images
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Project Harbor

• An open source enterprise-class registry server.
• Initiated by VMware China, adopted by users worldwide.
• Integrated into vSphere Integrated Containers.
• Apache 2 license.
• https://github.com/vmware/harbor/
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Key Features

• User management & access control
– RBAC: admin, developer, guest
– AD/LDAP integration

• Policy based image replication
• Vulnerability Scanning
• Notary
• Web UI
• Audit and logs
• Restful API for integration
• Lightweight and easy deployment
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Users and Developers

200+

• Developers

• Users

2600+20K+

Downloads Stars Users
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Partners
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Harbor Architecture
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Harbor users and partners (selected)
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Image replication (synchronization)
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Consistency of Container Images

• Container images are used throughout the life cycle of 
software development 
– Dev
– Test
– Staging
– Production

• Consistency must be maintained
– Version control
– Issue tracking
– Troubleshooting
– Auditing

15



Same Dockerfile Always Builds Same Image?

• Base image ubuntu:latest could be changed between builds
• ubuntu:14.04 could also be changed due to patching
• apt-get (curl, wget..) cannot guarantee always to install the 

same packages
• ADD depends on the build time environment to add files
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Example:
FROM ubuntu

RUN apt-get install –y python

ADD app.jar /myapp/app.jar



Shipping Images in Binary Format for Consistency
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Access Control to Images

• Organizations often keep images within their own organizations
– Intellectual property stays in organization
– Efficiency: LAN vs WAN

• People with different roles should have different access
– Developer – Read/Write
– Tester – Read Only

• Different rules should be enforced in different environments
– Dev/test env – many people can access
– Production – a limited number of people can access

• Can be integrated with internal user management system
– LDAP/Active Directory
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Example: Role Based Access Control in Harbor
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Project

Members Images

Guest:

Developer:

Admin:

${Project}/ubuntu:14.04
${Project}/nginx:1.8, 1.9
${Project}/golang:1.6.2
${Project}/redis:3.0

…...

docker pull ...    

docker pull/push ...    



Other security considerations

• Enable content trust by installing Notary service
– Image is signed by publisher’s private key during pushing
– Image is pulled using digest

• Perform vulnerability scanning
– Prevent images with vulnerabilities from being pulled
– Regular scanning based on updated vulnerability database
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Content trust for image provenance
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Vulnerability Scanning

• Static analysis of vulnerability by inspecting filesystem of 
container image and indexing features in database.

• Rescanning is needed only and only if new detectors are 
added.

• Update vulnerability data regularly
- Debian Security Bug Tracker
- Ubuntu CVE Tracker
- Red Hat Security Data
- Oracle Linux Security Data
- Alpine SecDB
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Vulnerability scanning
Set vulnerability threshold
Prevent images from being pulled if they exceed threshold
Periodic scanning based on updated vulnerability database

Registry – Image Vulnerability Scanning
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Image Distribution

• Container images are usually distributed from a registry.
• Registry becomes the bottleneck for a large cluster of nodes

– I/O
– Network

• Scaling out an registry server
– Multiple instances of registry sharing same storage
– Multiple instances of independent registry sharing no storage
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Image Distribution via Master-Slave Replication
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Hierarchical Image Distribution
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High Availability of Registry

• To remove single point of failure on registry
• Three models to achieve HA

– Shared storage
– Replication ( no shared storage )
– Using other HA platform
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Registries using Shared Storage



Image replication between registries
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VMware ESXi-1

Docker Volume Driver for 
vSphere

VMware ESXi-2

Docker Volume Driver for 
vSphere

VMware ESXi-3

Docker Volume Driver for 
vSphere

Shared Storage

Virtual SAN

Docker Volume -1

Docker Host VM

Harbor

vSphere Docker Volume 
Plugin

Docker Volume -2 Docker Volume-3 Other Docker 
Volume s

Registry HA on vSphere
• Registry in a VM protected by vSphere
• Image storage by VSAN Docker Volume



VMware ESXi-1
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• VM failed over to a healthy host
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Summary

• Container image is the static part of container 
lifecycle

• Registry is the key component to manage images
• Organizations usually need a private registry

– Security
– Efficiency
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Thank you!

https://github.com/vmware/harbor


