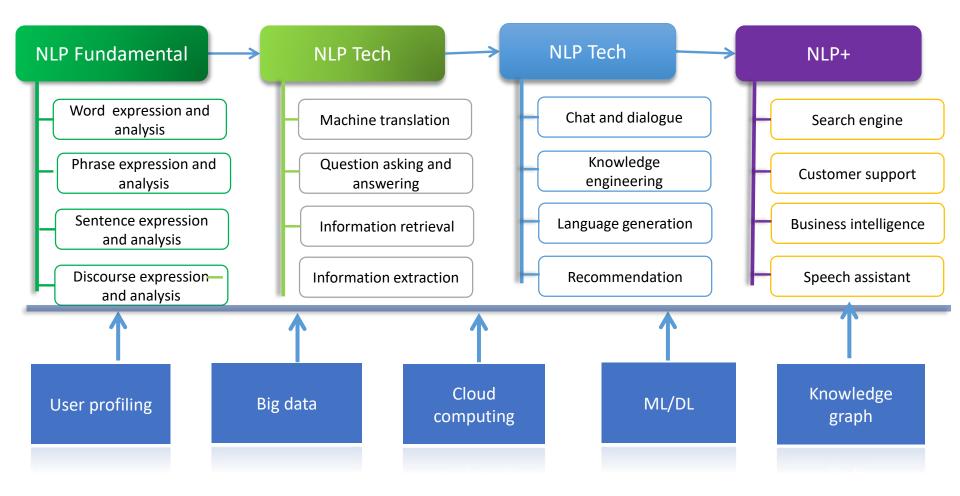
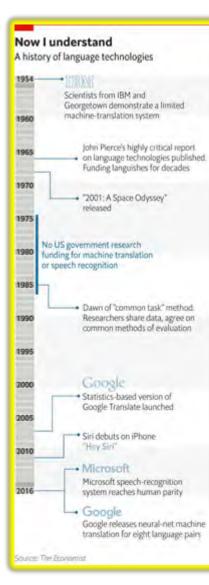
Progress of DNN-Based Natural Language Processing(NLP)

Dr. Ming Zhou

(mingzhou@microsoft.com)

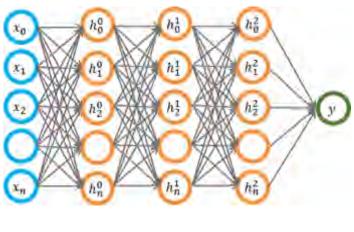

Microsoft Research Asia

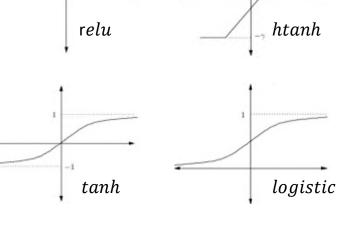
GAITC NLP Forum


May 22, 2017 @ Beijing

Natural Language Processing (NLP)

NLP is a branch of AI, referring to the tech to analyze, understand and generate human language to facilitate human-computer interaction and human-human exchange.


NLP Evolution


- 1940 ~ 1954 : Invention of computer and intelligence theory
- Leader : Chomsky, Backus, Weaver, Shannon
 - 1954 ~ 1970 : Formal rule system, logic theory and perceptron
- Leader : Minsky, Rosenblatt
- 1970 ~ 1980 : HMM-based ASR, semantic and discourse modelling
- Leader : Frederick Jelinek, Martin Kay
- 1980 ~ 1991 : Rule base and knowledge base
- Work : WordNet (1985), HPSG (1987), CYC (1984)
- 1991 ~ 2008 : statistical machine learning
- Approach : SVM, MaxEnt, PCFG, PageRank
- Application : SMT, QA and search engine
- 2008 ~ 2017 : big data and DL
- Work : word embedding, NMT, chit-chat, dialogue system, reading comprehension

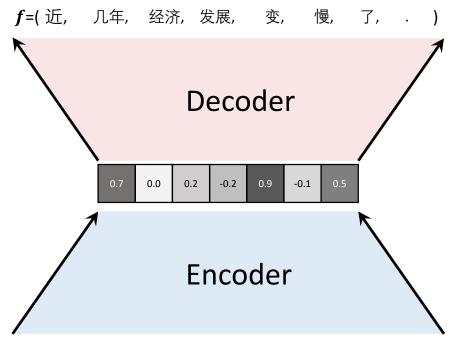
Deep Neural Network

- Deep Neural Network :
 - Involve multiple level neural networks
 - Non-Linear Learner

 $h^{0} = f(w^{0}x)$ $h^{1} = f(w^{1}h^{0})$ $h^{2} = f(w^{2}h^{1})$ $y = f(w^{3}h^{2})$

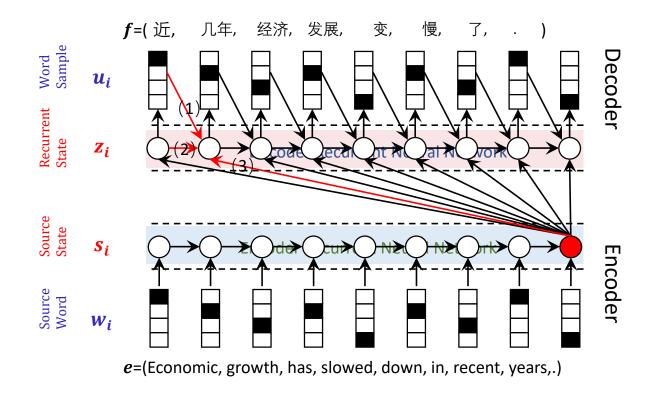
Active functions: y = f(x)

DNN4NLP Progress

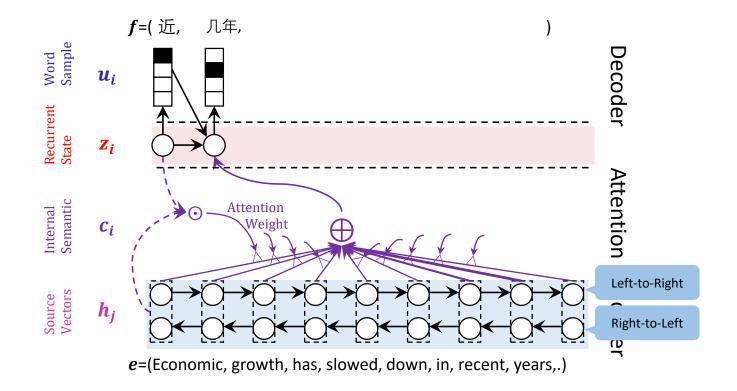

- Progress
 - Word expression with embedding
 - Sentence modelling via CNN or RNN(LSTM/GRU) for similarity estimation and sequential mapping
 - Successful applications such as NMT, chatbot, etc.
- Still exploring
 - Learning from unlabeled data (GANs, Dual Learning)
 - Learning from knowledge
 - Learning from user/environment (RL)
 - Discourse and context modelling
 - Personalized system (via user profiling)

In this talk, I will focus

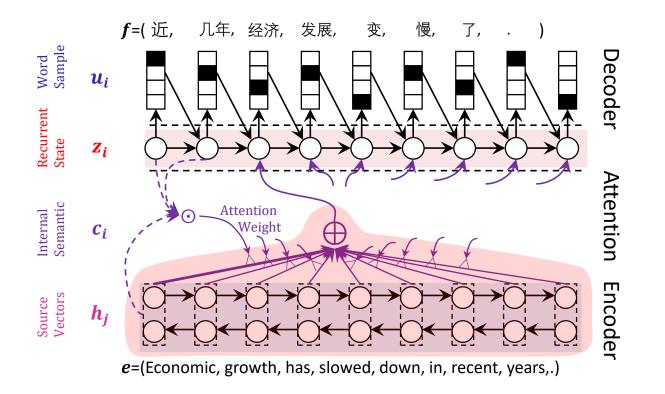
- NMT
- Chatbot
- Reading Comprehension


NMT

Encoder-Decoder for NMT with RNN

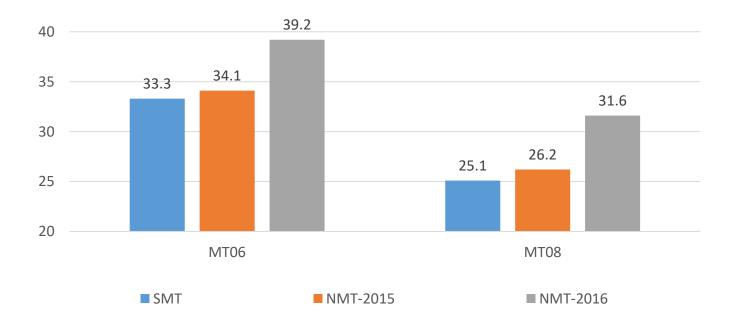

e=(Economic, growth, has, slowed, down, in, recent, years,.)

Encoder-Decoder for NMT

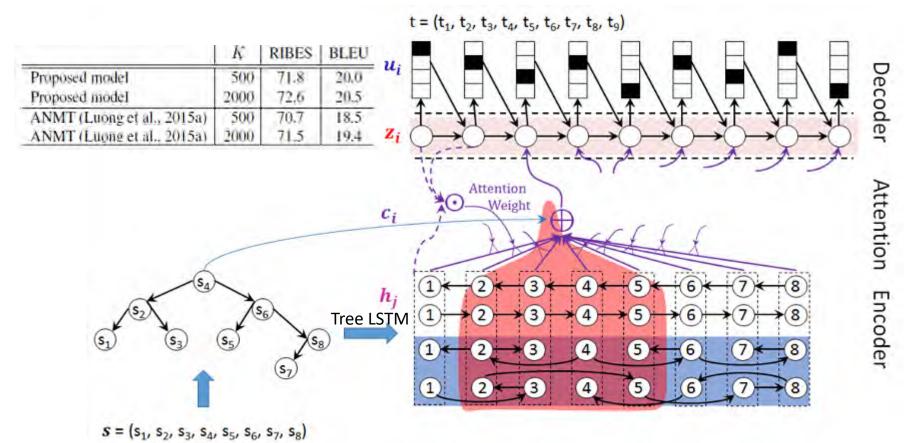

Sutskever et al., NIPS, 2014

Attention based Encoder-Decoder

Bahdanau et al., ICLR, 2015

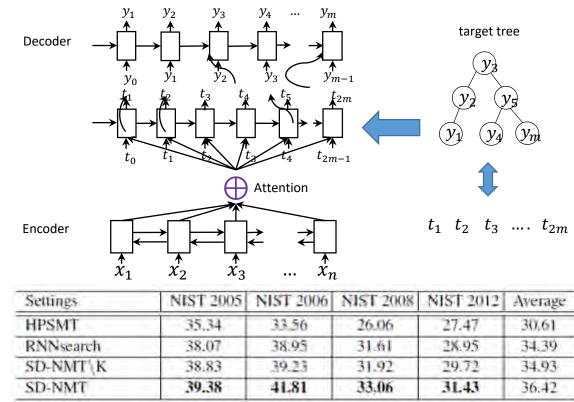

Attention based Encoder-Decoder

Bahdanau et al., ICLR, 2015

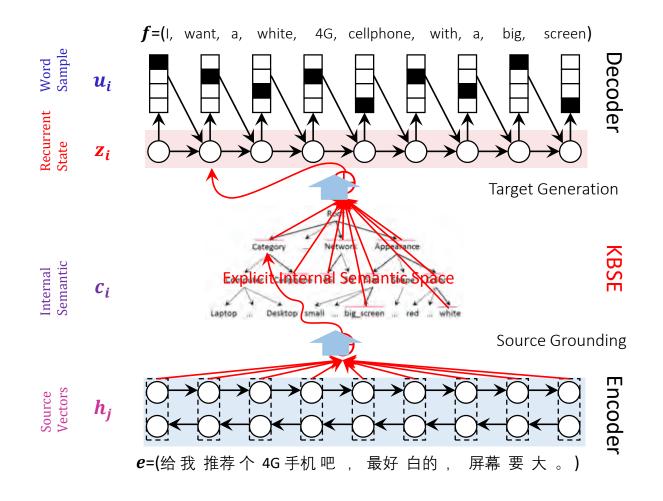

NMT Progress

- 4+ BLEU points improvements over SMT
 - Main stream research (dominating papers in ACL)
 - Productization (MS, Baidu, Google)

Fusing with Linguistic Knowledge


 Decoding from structure to string (tree-tosequence NMT)

Akiko Eriguchi , et al, Tree-to-Sequence Attentional Neural Machine Translation, ACL 2016


Fusing with Linguistic Knowledge

 Decoding from string to structure (sequence-totree NMT)

Shuangzhi Wu, et al, Tree-to-Sequence Attentional Neural Machine Translation, ACL 2017

Fusing with Domain Knowledge

Chen Shi, et al, Knowledge-based semantic embedding for machine translation, ACL 2016

Remaining Challenges

- Use of monolingual data
- 00V
- Linguistic rules at phrase and sentence levels
- Discourse level translation

Chatbot

- IR-based
- Generation-based

An Example of Conversation

Clerk: Good morning! Sir.

Me: Good morning!

Clerk: How are you today?

Me: Good. It is a good weather today.

Clerk: Yes. What I can help you?

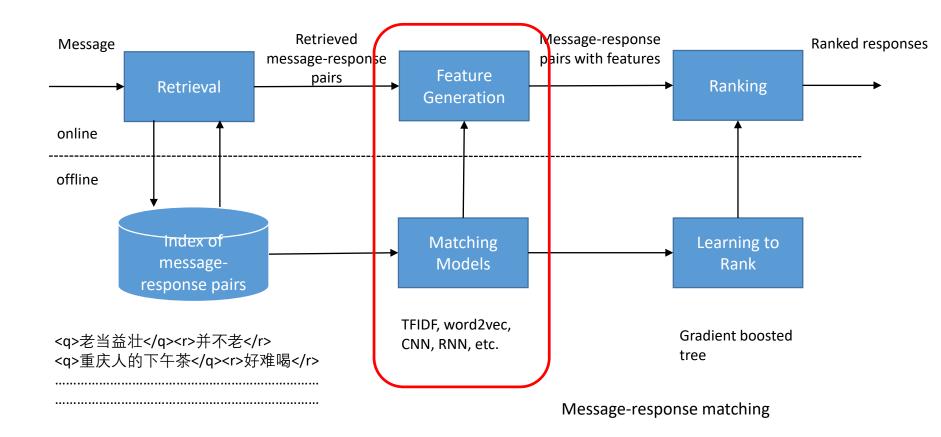
Me: I want to buy instant noodles.

Clerk: What brand?

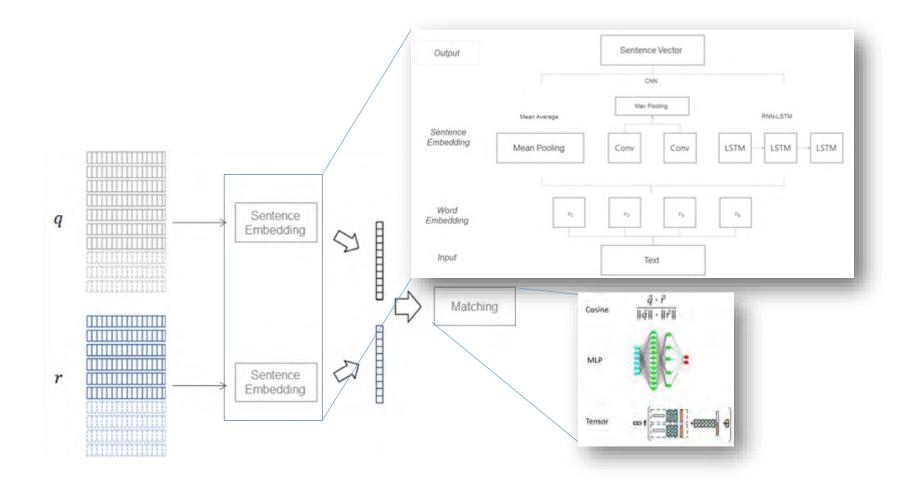
Me: Kangshifu (康师傅)

Clerk: how many boxes do you want? Me: 3, please. Clerk: I see. Me: how much is the price? Clerk: 3 Yuans Me: Thanks. Clerk: How do you pay? Cash or wechat? Me: Wechat Clerk: please scan here Me: Thanks

Chatbot (chitchat) Information & Answer

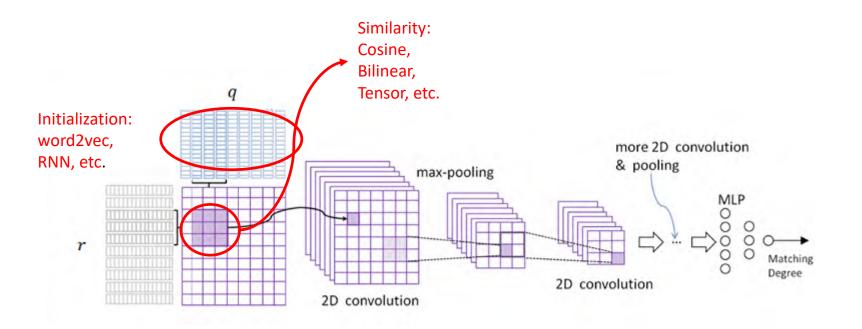

Task-oriented dialogue

Architecture of Conversation System


Controlling System				
Domain knowledge Dialogue knowledge	Task-oriented dialogue	User intention understanding Dialogue management		
FAQ、 knowledge graph, documents and tables	Information and answer	Intelligent search Question-answering		
General chat data Specific chat data	General chat	Communication skills User profiling		

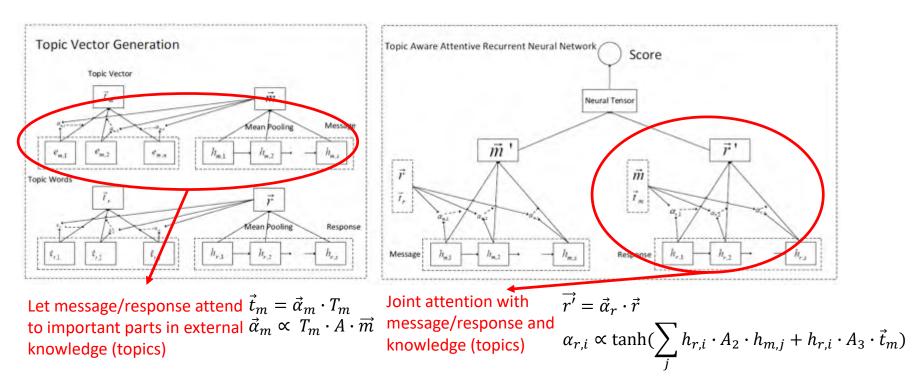
Retrieval-based Model

Architecture of Retrieval-based Chatbot (Single-Turn)



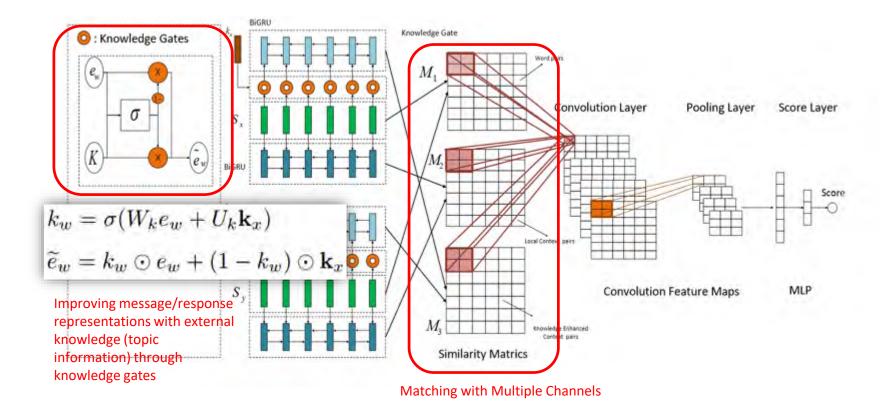
Basic Models for Message-Response Matching : Architecture I

Baotian Hu et al. Convolutional Neural Network Architectures for Matching Natural Language Sentences, In NIPS'14 X Qiu and X Huang. Convolutional Neural Tensor Network Architecture for Community-based Question Answering, In IJCAI'15


Basic Models for Message-Response Matching : Architecture II

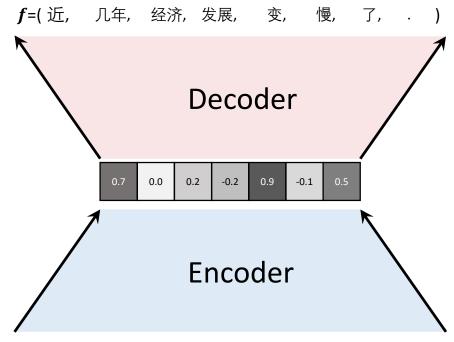
Baotian Hu et al. Convolutional Neural Network Architectures for Matching Natural Language Sentences, In NIPS'14 Liang Pang et al. Text Matching as Image Recognition, In AAAI'16 Shengxian Wan et al. A Deep Architecture for Semantic Matching with Multiple Positional Sentence Representations, In AAAI'16

Fusing with External Knowledge I

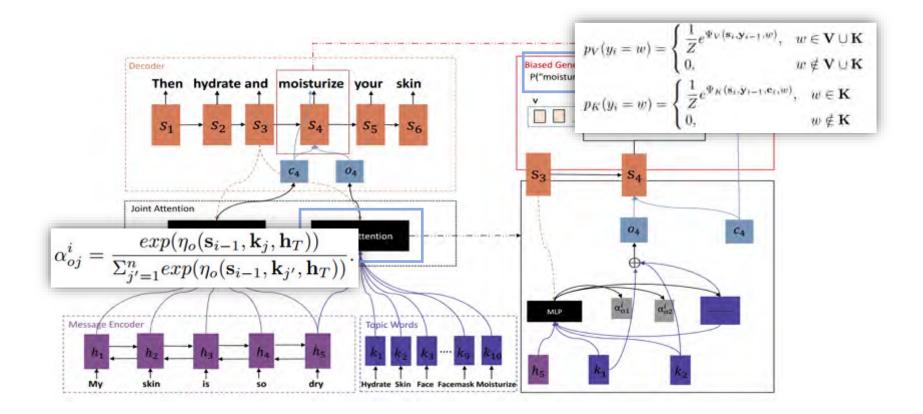

Topic Aware Attentive Recurrent Neural Network (TAARNN)

Yu Wu et al., Response Selection with Topic Clues for Retrieval-based Chatbots, In arxiv

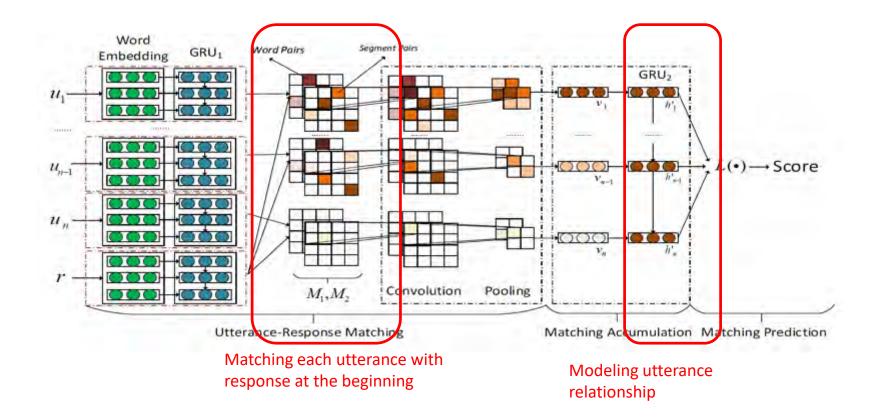
Fusing with External Knowledge II


• Knowledge Enhanced Hybrid Neural Network (KEHNN)

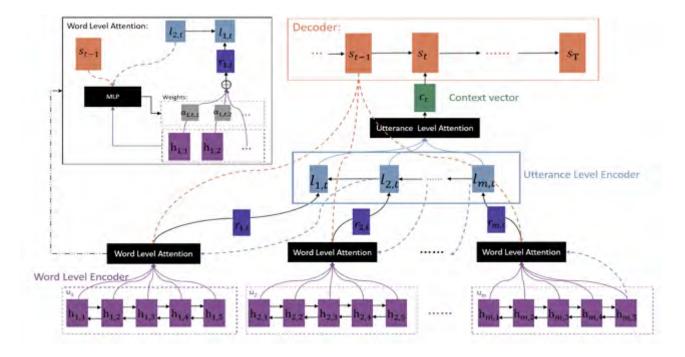
Generation-based Model


- Template-based approach(AIML)
- SMT-based approach
- Focus on neural net approaches

Encoder-Decoder for Sentence Generation


e=(Economic, growth, has, slowed, down, in, recent, years,.)

Topic-aware Neural Response Generation (TA-Seq2Seq)



Multi-Turn Conversation

Session-Response Matching : Sequential Matching Network

Multi-turn Response Generation: Hierarchical Recurrent Attention Network

Chen Xing et al., Hierarchical Recurrent Attention Network for Response Generation, In arxiv

Visualization

Remaining Challenges

- Good public dataset
- Effective evaluation metric
- Sentiment-aware chat
- Effective memory mechanism
- Personalized chat

Reading Comprehension

SQuAD: 100,000+ Questions for Machine Comprehension of Text

The Stanford Question Answering Dataset Best Resource Paper in EMNLP 2016

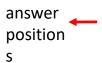
Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang

{pranavsr,zjian,klopyrev,pliang}@cs.stanford.edu Computer Science Department Stanford University

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of pre- cipitation include drizzle, rain, sleet, snow, grau- pel and hail Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, in- tense periods of rain in scattered locations are called "showers".
 What causes precipitation to fall? gravity
What is another main form of precipitation be- sides drizzle, rain, snow, sleet and hail? graupel
Where do water droplets collide with ice crystals to form precipitation? within a cloud

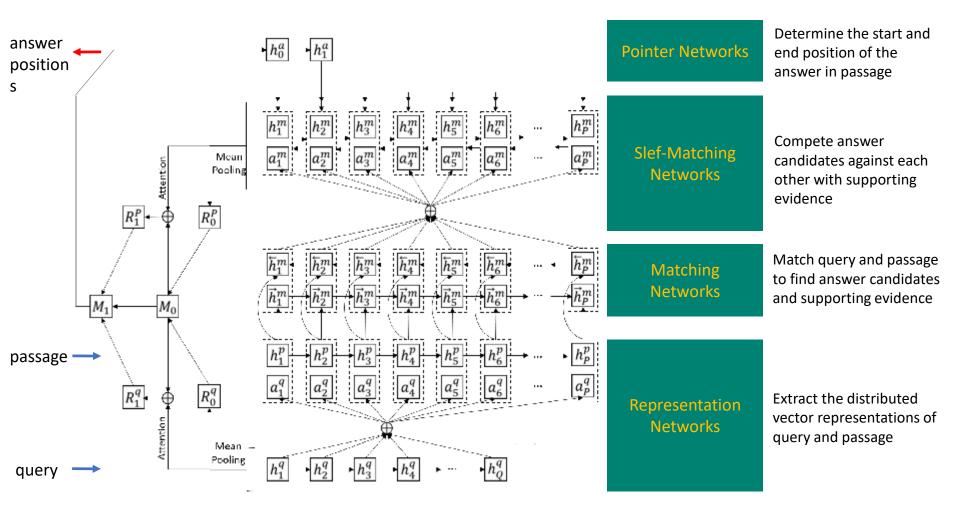
Dataset	# of questions
Training	87,599
Dev	10,570
Test	~10K

ImageNet-like evaluation: the test dataset is not public and we need to submit our system for evaluation on test set.

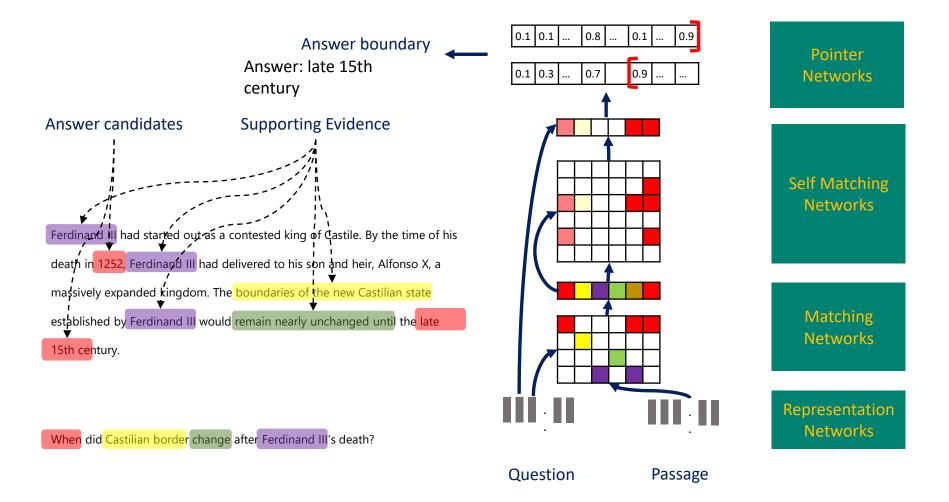

Rank	Model	EM	F1
1	r-net (ensemble) Microsoft Research Asia	75.863	82.947
2	ReasoNet (ensemble) MSR Redmond	73.419	81.752
2	Multi-Perspective Matching (diversity-ensemble) IBM Research	73.765	81.257
3	BiDAF (ensemble) Allen Institute for Al & University of Washington	73.314	81.089
4	Dynamic Coattention Networks (ensemble) Salesforce Research	71.625	80.383
5	r-net (single model) Microsoft Research Asia	71.258	79.66
6	Document Reader (single model) Facebook AI Research	69.967	78.974
7	ReasoNet (single model) MSR Redmond	69.107	78.895
7	FastQAExt German Research Center for Artificial Intelligence	70.849	78.857
8	Multi-Perspective Matching (single model) IBM Research	68.877	77.771
9	jNet (single model) USTC & National Research Council Canada & York University	68.73	77.393
10	BiDAF (single model) Allen Institute for AI & University of Washington	67.974	77.323
10	FastQA German Research Center for Artificial Intelligence	68.436	77.07

11	Match-LSTM with Ans-Ptr (Boundary+Ensemble) Singapore Management University	67.901	77.022
12	Iterative Co-attention Network Fudan University	67.502	76.786
13	Dynamic Coattention Networks (single model) Sales(brce Research	66.233	75.896
13	RaSoR Google NY, Tel-Aviv University	67.387	75.543
14	Match-LSTM with Bi-Ans-Ptr (Boundary) Singapore Management University	64.744	73.743
15	Attentive CNN context with LSTM NLPR, CASIA	63.306	73.463
16	Fine-Grained Gating Carnegie Mellon University	62.446	73.327
16	Dynamic Chunk Reader IBM	62.499	70.956
17	Match-LSTM with Ans-Ptr (Boundary) Singapore Management University	60.474	70.695
18	Match-LSTM with Ans-Ptr (Sentence) Singapore Management University	54.505	67.748

R-NET (MSRA)) is the top system (as of 2017-2-23) for both single model & ensemble model (on both dev and test set)

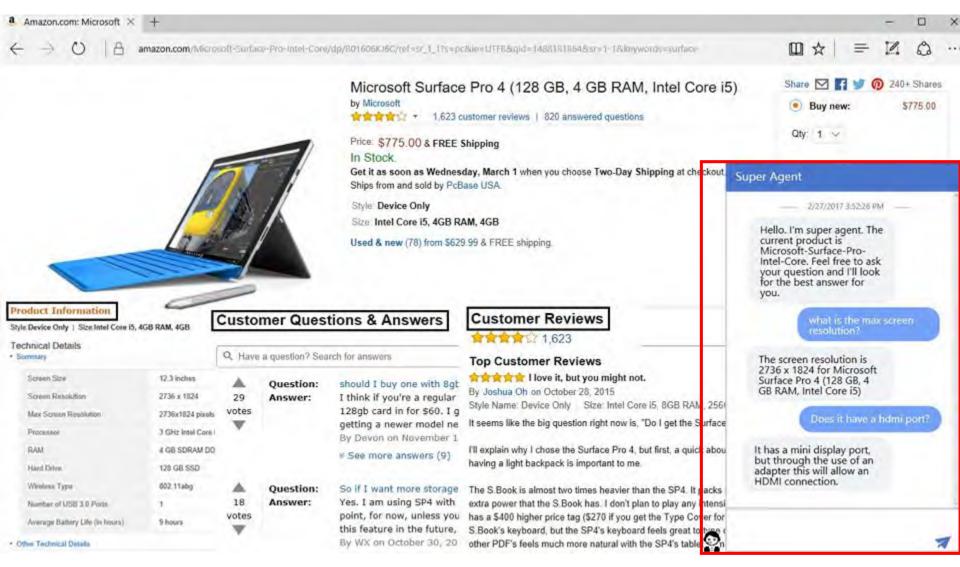

Rank	Model	EM	F1
1 14 days app	r-net (ensemble) Microsoft Research Asia	76.922	84.006
2 37 days ago	ReasoNet (ensemble) MSR Redmand	75.034	82.552
3 a month age	BiDAF (ensemble) Alien Institute for Al & University of Washington https://andv.org/abs/1611.01603	73,744	81.525
3 3 mantha aga	Multi-Perspective Matching (diversity-ensemble) IBM Research https://arxiviorg/abs/1612.04211	73,765	81.257
4 16 days ago	n-net (single model) Microsoft Research Asia	72,401	80.751
5 S months ago	Dynamic Coattention Networks (ensemble) Salesforce Research https://aniv.org/abs/1611.01604	71625	80.383
6 15Hourt ago	jNet (single model) USTC & National Research Council Canada & York University https://andv.org/abs/1703.04617	70.607	79.821
7 10 days ago	Ruminate Reader (single model) New York University	70,586	79.492
8. SA days ago	ReasoNet (single model) MSR Redmond	70.555	79.364
8 SZ daya tept	Document Reader (single model) Facebook Al Research	70.733	79,353
8 3 months ago	FastQAExt German Research Center for Artificial Intelligence https://aniv.org/abs/1703.04815	70.849	78.857
9 Denosities ago	Multi-Perspective Matching (single model) /BM Research https://aniv.org/abs/1612.04211	68.877	77,771
9 Hidayaya	RaSoR (single model) Google NY, Tet-Aviv University https://andv.org/abs/1611.01436	69.642	77.696

10 4 months age	BiDAF (single model) Allen Institute for Al & University of Washington https://ankiv.org/abs/1611.01603	67.974	77.323
10 Josefficaço	FastQA German Research Center for Artificial Intelligence https://arxiv.org/abs/1703.04816	68.436	77.07
11 Smoothcaga	Match-LSTM with Ans-Ptr (Boundary+Ensemble) Singapore Monagement University https://ankiv.org/abs/1608.07905	67.901	77.022
12 2 months ago	Iterative Co-attention Network Fusion University	67.502	76.786
13 S months ago	Dynamic Coattention Networks (single model) Salesforce Research https://ankv.org/abs/1611,01604	66.233	75.896
14 Simontificação	Match-LSTM with Bi-Ans-Ptr (Boundary) Singepore Management University https://arxiv.org/abs/1608.07905	64.744	73.743
15 a month age	Attentive CNN context with LSTM NLPR, CASIA	63.306	73.463
16 Smooths ago	Fine-Grained Gating Comegie Mellon University https://ankiv.org/abs/1611.01724	62,446	73.327
16 6 months ago	Dynamic Chunk Reader /B/M https://arxiv.org/abs/1610.09996	62.499	70.956
17 7 minitis ago	Match-LSTM with Ans-Ptr (Boundary) Singupore Management University https://arxiv.org/abs/1608.07905	60.474	70.695
18 7 months app	Match-LSTM with Ans-Ptr (Sentence) Singapore Management University https://ankly.org/abs/1608.07905	54.505	67.748
	Human Performance Stanford University (Rajpurkar et al. 16)	82.304	91.221



5	Self-Matching Networks	Compete answer candidates against each other with supporting evidence
	Matching Networks	Match query and passage to find answer candidates and supporting evidence
passage → query →	Representation Networks	Extract the distributed vector representations of query and passage

Wenhui Wang et al, Gated Self-Matching Networks for Reading Comprehension and Question Answering, ACL 2017



Wenhui Wang et al, Gatd Self-Matching Networks for Reading Comprehension and Question Answering, ACL 2017

Wenhui Wang et al, Gatd Self-Matching Networks for Reading Comprehension and Question Answering, ACL 2017

Customer Support with Reading Comprehension

Lei Cui et al, SuperAgent: A Customer Service Chatbot for E-commerce, to appear at ACL 2017

Remaining Challenges

- Difficulty level setting and corresponding dataset
- From answer extraction to answer inference
- How to use knowledge and common sense

NLP in Future 5-10 Years

- Spoken Translator popularly used
- Natural conversation(chit-chat, QnA and taskoriented dialogue) reaches satisfactory quality
- Improves the productivity of customer support
- Generation of poetry, song, novel and news
- Deeply used in various verticals such as education, bank, healthcare, law, etc.

Future Direction

- Explore the explainable learning to understand the mechanism of AI and NLP
- Fusing knowledge and data to improve the efficiency of learning
- Domain adaptation via transfer learning
- Self-evolvement via reinforcement learning
- Leverage user profiling for personalized service