
Java企业应用
-性能优化原则, 方法与策略

阿里巴巴 李三红

自我介绍

• 2014年加入蚂蚁金服，目前在阿里基础架构事业群，基础
软件部门：
• 开发基于OpenJDK阿里定制版本：AJDK
• 开发性能故障诊断工具： ZProfiler，ZDebugger，PIPA

• 联系方式
mail: sanhong.lsh@alibaba-inc.com
微博: sanhong_li

Outline

1. Performance Basics and Methodology
2. Fundamentals of Performance Tuning

• Profiling Driven Optimization
• JVM Tuning

• GC
• JIT

3. Optimization Strategy for JavaEE
4. Recap

Recall Little‘s law

L = λ*W
In queueing theory, the long-term average number of

customers in a stable system, L，is equal to the long-term

average arrival rate, λ, multiplied by the average time a

customer spends in the system, W

source: https://en.wikipedia.org/wiki/Little%27s_law

Throughput and RT

MeanNumberInSystem = MeanThroughput* MeanResponseTime

 Throughput and RT are related
 Decreasing RT ”almost always” improves Throughput
 Throughput improving doesn’t necessarily mean RT

decreasing
 Performance tuning and cost saving

 More higher throughput/lower RT but without adding
new hardware

source: https://en.wikipedia.org/wiki/Little%27s_law

Approaches to Performance

Hardware

Operating System

Java VM

AppServer

Java’s view

• Algorithm optimization

• Profiling-driven

App

• Upgrade (JDK&OS)

• JVM(OS) Tuning

• Specialization

• Use new hardware

• Use cheaper hardware

Approaches:
a) Outside in approach(performance baseline)
b) Layered approach(“Bottom up” or “Top down”)
c) A hybrid of both a), b)

Amdahl's Scaling Law

source: https://en.wikipedia.org/wiki/Amdahl%27s_law

Speedup=
1

𝐹+
1−𝐹

𝑁

F: is fraction of work
that is serial

N: is number of
threads

• Reduce the amount of serial work performed

Costs Reduce Scaling

1. Potential contributors to F:
 Synchronization(synchronized&j.u.c.Lock)

• data structures need to be thread
safe

• communication overhead between
threads

 Infamous “stop the world” (aka STW) in
JVM

2. Cost incurred when the N gets increased

 Thread context switch

 JConsole (MXBean)

 Java Mission Control

 JProfiler

 HealthCenter&jucProfiler

Profiling: Sampling vs Instrument

main

foo

bar

main

foo

bar

sampling

Instrument

Available Technology:
BCI, JVMTi, javax.management, System.currentTimeMillis()

method call

foo

bar

main

Sampling vs Instrument
 Sampling

 Lower overhead (determined by sampling interval)
 Discover unknown code
 Non intrusive
 No execution path
 Periodicity Bias

 Instrument
 Wall time (estimate IO time)
 Full execution path
 Configuration on what methods to instrument
 Generally more data to be collected

Safepoint Bias

Stack trace sampling happens only when the
given thread at a safepoint
 The hot loop may not get profiled anymore

 Use following tools instead
 Java Mission Control

 Honest Profiler(githup)

 ZProfiler(alipay internal profiling tool)

Tools for Diagnostics

• Most of them could be found in JAVA_HOEM/bin

• Good reference: Troubleshooting Guide for JavaSE 6 with
HotSpotVM

Basics of JVM Tuning

Guild for GC Tuning

• Select the right GC algorithm
• parallel old ,CMS and G1 collector
• Rule of thumb: GC overhead is ideally < 10%

• Choose the right heap size

• Configure the appropriate GG parameters

source: Charlie Hunt, Binu John JavaTM performance

JIT and common optimization

• Important concepts
• Profiler guided optimization(PGO)
• Optimization decisions are made dynamically
• Mix mode execution

• Some common optimization
• Inlining
• Intrinsic
• Monomorphic dispatch
• …

 Liskov substitution principle
Subtypes MUST be substitutable

for their base types

JIT Profiling with JITWatch

• JITWatch: a graphical visualization and analysis tool for
understanding the JIT

Enabled by:
-XX:+UnlockDiagnosticVMOptions
-XX:+TraceClassLoading
-XX:+LogCompilation
-XX:+PrintAssembly

Typical distributed JEE architecture

Java EE Container

Java EE Application

System A System B System C

REST Service via HTTP
DB via JDBC

Remote Bean via RMI

cloud cloud cloud

The problem…

 Add communication cost
 RPC
 serialization/deserialization

 Can not shift resources towards
demand

 Can not share the underlying Java
artifacts(such as JIT)

Multitenancy for JavaEE

Operating System

Java VM

AppServer

App

Hardware

Operating System

Java VM

AppServer

App1 App2 App3 Appx

Hardware

 Run multiple Java EE applications (as tenants)
into same Java EE container

High Density Cloud for JavaEE

The JavaEE applications developed
separately can be deployed
seamlessly into the same container.

• devOps
 Orchestrate JavaEE application at

scale

• Infrastructure
 ‘Multi-tenant’ JavaEE container
 ‘Virtualized’ JVM

source: https://www.dreamstime.com

Tomcat/JDK extended for PaaS

Hardware

AliTomcat(Multi-tenant)

AJDK(Virtualized)

OS

App1
• AliTomcat: run multiple apps side-by-side

safely

• AJDK allows for collocation of multiple JEE

apps(as tenant) in a single instance of JVM:

• Isolate application from one another.

• Share metadata aggressively and

transparently, such as:

 bytecodes of methods

 GC

 JIT : Alibaba/Alipay JDK, based on OpenJDK

App2 App3 Appx

PaaS

AAE: Alibaba Application Engine
• Scaling tenant application with AAE

• spread application evenly across hosts
• but pack applications on the single JVM as mush as possible,

based on its resource capacity:
• CPU usage
• Memory(monitoring GC)

AAE
DC-1 DC-2

A B A B

g

F

a

e

d

a

c

b

a

Benefits

CPU

50%

100%

A B A+B

(100* 30% + 100*70%) /200 = 50%

Benefits(Cont.)

• Eliminate the unnecessary RPC
• Minimize the cost caused by object serialization/de-

serialization
• Share underlying Java artifacts as much as possible

• GC
• JIT
• Heap

Compared with Docker

CPU overcommit via docker

Hardware

OS

‘shared memory’ via
Multitenancy

Hardware

OS

D

D

CPU

Mem

A B C A

B

C

Mem

CPU

Summary

• What we covered:
• Performance basics& methodology
• Performance tuning

• Profiling

• Tuning from JVM perspective

• Multitenancy for JavaEE

reach to me:

mail: sanhong.lsh@alibaba-inc.com

weibo: sanhong_li

