
Java企业应用
-性能优化原则, 方法与策略

阿里巴巴 李三红

自我介绍

• 2014年加入蚂蚁金服，目前在阿里基础架构事业群，基础
软件部门：
• 开发基于OpenJDK阿里定制版本：AJDK
• 开发性能故障诊断工具： ZProfiler，ZDebugger，PIPA

• 联系方式
mail: sanhong.lsh@alibaba-inc.com
微博: sanhong_li

Outline

1. Performance Basics and Methodology
2. Fundamentals of Performance Tuning

• Profiling Driven Optimization
• JVM Tuning

• GC
• JIT

3. Optimization Strategy for JavaEE
4. Recap

Recall Little‘s law

L = λ*W
In queueing theory, the long-term average number of

customers in a stable system, L，is equal to the long-term

average arrival rate, λ, multiplied by the average time a

customer spends in the system, W

source: https://en.wikipedia.org/wiki/Little%27s_law

Throughput and RT

MeanNumberInSystem = MeanThroughput* MeanResponseTime

 Throughput and RT are related
 Decreasing RT ”almost always” improves Throughput
 Throughput improving doesn’t necessarily mean RT

decreasing
 Performance tuning and cost saving

 More higher throughput/lower RT but without adding
new hardware

source: https://en.wikipedia.org/wiki/Little%27s_law

Approaches to Performance

Hardware

Operating System

Java VM

AppServer

Java’s view

• Algorithm optimization

• Profiling-driven

App

• Upgrade (JDK&OS)

• JVM(OS) Tuning

• Specialization

• Use new hardware

• Use cheaper hardware

Approaches:
a) Outside in approach(performance baseline)
b) Layered approach(“Bottom up” or “Top down”)
c) A hybrid of both a), b)

Amdahl's Scaling Law

source: https://en.wikipedia.org/wiki/Amdahl%27s_law

Speedup=
1

𝐹+
1−𝐹

𝑁

F: is fraction of work
that is serial

N: is number of
threads

• Reduce the amount of serial work performed

Costs Reduce Scaling

1. Potential contributors to F:
 Synchronization(synchronized&j.u.c.Lock)

• data structures need to be thread
safe

• communication overhead between
threads

 Infamous “stop the world” (aka STW) in
JVM

2. Cost incurred when the N gets increased

 Thread context switch

 JConsole (MXBean)

 Java Mission Control

 JProfiler

 HealthCenter&jucProfiler

Profiling: Sampling vs Instrument

main

foo

bar

main

foo

bar

sampling

Instrument

Available Technology:
BCI, JVMTi, javax.management, System.currentTimeMillis()

method call

foo

bar

main

Sampling vs Instrument
 Sampling

 Lower overhead (determined by sampling interval)
 Discover unknown code
 Non intrusive
 No execution path
 Periodicity Bias

 Instrument
 Wall time (estimate IO time)
 Full execution path
 Configuration on what methods to instrument
 Generally more data to be collected

Safepoint Bias

Stack trace sampling happens only when the
given thread at a safepoint
 The hot loop may not get profiled anymore

 Use following tools instead
 Java Mission Control

 Honest Profiler(githup)

 ZProfiler(alipay internal profiling tool)

Tools for Diagnostics

• Most of them could be found in JAVA_HOEM/bin

• Good reference: Troubleshooting Guide for JavaSE 6 with
HotSpotVM

Basics of JVM Tuning

Guild for GC Tuning

• Select the right GC algorithm
• parallel old ,CMS and G1 collector
• Rule of thumb: GC overhead is ideally < 10%

• Choose the right heap size

• Configure the appropriate GG parameters

source: Charlie Hunt, Binu John JavaTM performance

JIT and common optimization

• Important concepts
• Profiler guided optimization(PGO)
• Optimization decisions are made dynamically
• Mix mode execution

• Some common optimization
• Inlining
• Intrinsic
• Monomorphic dispatch
• …

 Liskov substitution principle
Subtypes MUST be substitutable

for their base types

JIT Profiling with JITWatch

• JITWatch: a graphical visualization and analysis tool for
understanding the JIT

Enabled by:
-XX:+UnlockDiagnosticVMOptions
-XX:+TraceClassLoading
-XX:+LogCompilation
-XX:+PrintAssembly

Typical distributed JEE architecture

Java EE Container

Java EE Application

System A System B System C

REST Service via HTTP
DB via JDBC

Remote Bean via RMI

cloud cloud cloud

The problem…

 Add communication cost
 RPC
 serialization/deserialization

 Can not shift resources towards
demand

 Can not share the underlying Java
artifacts(such as JIT)

Multitenancy for JavaEE

Operating System

Java VM

AppServer

App

Hardware

Operating System

Java VM

AppServer

App1 App2 App3 Appx

Hardware

 Run multiple Java EE applications (as tenants)
into same Java EE container

High Density Cloud for JavaEE

The JavaEE applications developed
separately can be deployed
seamlessly into the same container.

• devOps
 Orchestrate JavaEE application at

scale

• Infrastructure
 ‘Multi-tenant’ JavaEE container
 ‘Virtualized’ JVM

source: https://www.dreamstime.com

Tomcat/JDK extended for PaaS

Hardware

AliTomcat(Multi-tenant)

AJDK(Virtualized)

OS

App1
• AliTomcat: run multiple apps side-by-side

safely

• AJDK allows for collocation of multiple JEE

apps(as tenant) in a single instance of JVM:

• Isolate application from one another.

• Share metadata aggressively and

transparently, such as:

 bytecodes of methods

 GC

 JIT : Alibaba/Alipay JDK, based on OpenJDK

App2 App3 Appx

PaaS

AAE: Alibaba Application Engine
• Scaling tenant application with AAE

• spread application evenly across hosts
• but pack applications on the single JVM as mush as possible,

based on its resource capacity:
• CPU usage
• Memory(monitoring GC)

AAE
DC-1 DC-2

A B A B

g

F

a

e

d

a

c

b

a

Benefits

CPU

50%

100%

A B A+B

(100* 30% + 100*70%) /200 = 50%

Benefits(Cont.)

• Eliminate the unnecessary RPC
• Minimize the cost caused by object serialization/de-

serialization
• Share underlying Java artifacts as much as possible

• GC
• JIT
• Heap

Compared with Docker

CPU overcommit via docker

Hardware

OS

‘shared memory’ via
Multitenancy

Hardware

OS

D

D

CPU

Mem

A B C A

B

C

Mem

CPU

Summary

• What we covered:
• Performance basics& methodology
• Performance tuning

• Profiling

• Tuning from JVM perspective

• Multitenancy for JavaEE

reach to me:

mail: sanhong.lsh@alibaba-inc.com

weibo: sanhong_li

