


• 顶级学术期刊和会议上发表150余篇论文，被引用万余
次。

• 担任诸多顶级学术会议
(SIGIR/ICML/NIPS/KDD/WWW/AAAI/ WINE/ICTIR等)组
委会主席或领域主席, 顶级学术期刊(TOIS/TWEB 

/Neurocomputing等)副主编。

• 发布或联合发布知名开源项目
• 微软认知工具包(CNTK) 

• 微软图引擎 (Graph Engine) 

• 微软分布式机器学习工具包(DMTK)
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Microsoft had all 5 entries being the 1-st places this year: ImageNet classification, 

ImageNet localization, ImageNet detection, COCO detection, and COCO segmentation







https://arxiv.org/abs/1610.05256



vs.
Sedol Lee

Atari Games

Machine Learning, as the driving force, is 

entering a new era of big model and big data. 



DNN: Deep Neural Networks 

CNN: Convolutional Neural 

Networks

RNN: Recurrent Neural 

Networks



Model Hardware Time cost

ResNet on ImageNet

~1M image samples for 

1K classes

K40 * 8 ~ 130 hours

GoogleNet on ImageNet K40 ~ 570 hours

2000h Speech LSTM 

model training

K40 ~ 1100 hours

Neural Translation model K40 ~ 2000 hours



How to well utilize computation resources

to speed up the training of big model 

over big data?





• Mini-tutorial on distributed machine learning

• Details on CNTK’s parallel training



• CNTK is Microsoft’s open-source, cross-platform toolkit for learning and evaluating deep neural 
networks.

• CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into 
complex computational networks, supporting relevant network types and applications.

• CNTK is production-ready: State-of-the-art accuracy, efficient, and scales to multi-GPU/multi-
server.





“CNTK expresses (nearly) arbitrary neural networks by composing simple 
building blocks into complex computational networks, supporting relevant 
network types and applications.”



“CNTK expresses (nearly) arbitrary neural networks by composing simple 
building blocks into complex computational networks, supporting relevant 
network types and applications.”

example: 2-hidden layer feed-forward NN

h1 =  s(W1 x + b1)

h2 =  s(W2 h1 + b2)

P =  softmax(Wout h2 + bout)

with input x  RM



“CNTK expresses (nearly) arbitrary neural networks by composing simple 
building blocks into complex computational networks, supporting relevant 
network types and applications.”

example: 2-hidden layer feed-forward NN

h1 =  s(W1 x + b1)

h2 =  s(W2 h1 + b2)

P =  softmax(Wout h2 + bout)

with input x  RM and one-hot label y  RJ

and cross-entropy training criterion

ce =  yT log P

Scorpusce =   max



“CNTK expresses (nearly) arbitrary neural networks by composing simple 
building blocks into complex computational networks, supporting relevant 
network types and applications.”

example: 2-hidden layer feed-forward NN

h1 =  s(W1 x + b1) h1 = sigmoid (x  @ W1   + b1)

h2 =  s(W2 h1 + b2) h2 = sigmoid (h1 @ W2   + b2)

P =  softmax(Wout h2 + bout) P  = softmax (h2 @ Wout + bout)

with input x  RM and one-hot label y  RJ

and cross-entropy training criterion

ce =  yT log P ce = cross_entropy (P, y)

Scorpusce =   max



“CNTK expresses (nearly) arbitrary neural networks by composing simple 
building blocks into complex computational networks, supporting relevant 
network types and applications.”

h1 = sigmoid (x  @ W1   + b1)

h2 = sigmoid (h1 @ W2   + b2)

P  = softmax (h2 @ Wout + bout)

ce = cross_entropy (P, y)



“CNTK expresses (nearly) arbitrary neural networks by composing simple 
building blocks into complex computational networks, supporting relevant 
network types and applications.”
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“CNTK expresses (nearly) arbitrary neural networks by composing simple 
building blocks into complex computational networks, supporting relevant 
network types and applications.”
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LEGO-like composability allows CNTK to support
wide range of networks & applications



• Select right reader and learner to do an LEGO-

like training

• Describe network as Computation Network

• Using Simple Network Builder, Brainscript or 

python to build Computation Network

CNTK

learner
• SGD

(momentum,

AdaGrad, …)

• minibatching,

packing,

padding

reader
• task-specific

deserializer

• automatic

randomization

corpu

s

mode

l

network
• network

definition

• CPU/GPU

execution

engine



• FCN-5/-8 – Fully connected network with different layers.

• AlexNet/ResNet – typical convolutional network for image classification / 

recognition

• LSTM-32/-64 is for the LSTM model (2 lstm layer inside) with different batch size

• Iteration here means a (mini-batch) update.

• Caffe doesn’t support RNN/LSTM computation.

• Experiment with TitanX GPU
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Speed Comparison for Single GPU Training
meausred by iterations*/second, higher=better
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• CNTK has 1bit SGD enabled.

• All the experiment is carried out based on FCN-5 model with 

synchronous data parallel algorithm on K40 GPUs with 

Infinitband connection.
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Measured by iterations / second, higher = better
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http://github.com/Microsoft/cntk

• CNTK is fast for single-GPU training, and its speed is especially 

outstanding for RNN training. CNTK is also the best among all 

DNN tools in terms of scalability.

http://github.com/Microsoft/cntk


• Quick revisit on CNTK

• Mini-tutorial on distributed machine learning

• Details on CNTK’s parallel training



1. Partition the training data

2. Parallel training on different machines

3. Synchronize the local updates

4. Refresh the local model with new 

parameters, go to 2.



Worker 1

Worker 2

Worker 3

Worker 4

∆𝜔𝑖
𝑡1

2 𝜔𝑡

Global Model

Synchronization

Time

Individual workers synchronize with each other every (k)

mini-batch: 

1) Aggregate ∆𝜔𝑖’s from all workers to refine global model 𝜔.
2) Broadcast global model 𝜔 back to each worker.

3) After receiving new global model, each worker starts next 

step of training.

BSP: Bulk Synchronous 

Parallel

Worker 1

Worker 2

Worker 3

Worker 4

∆𝜔𝑖
𝑡1 2 𝜔𝑡

Time

Global Model

No Synchronization until staleness threshold is hit

Finished Iteration #5

Finished Iteration #2

When staleness=3, 

worker 3 will wait for 

worker 1 to catch 

up.

Individual worker pushes update ∆𝝎𝒊 to global model 

𝝎 every (k) mini-batch, until notice that another 

worker is 𝒔 steps behind. Thus SSP tradeoffs between 

BSP and ASP.

1) When 𝑠 = 0, 𝑆𝑆𝑃 = 𝐵𝑆𝑃.

2) When 𝑠 = ∞, 𝑆𝑆𝑃 = 𝐴𝑆𝑃.

SSP: Stale Synchronous 

Parallel

• BSP is a well-defined mechanism, which 

can be equivalent to a single-machine 

SGD under certain conditions. 

• BSP has convergence guarantee, but 

might be inefficient due to frequent 

synchronization.

• ASP always runs fast due to its 

asynchronous nature, no time wasted on 

waiting.

• ASP, in theory, might not converge when 

differences between workers’ progresses 

are unbounded (straggler will destroy 

convergence by pushing stale ∆𝜔 onto 

global model).

• SSP tradeoffs efficiency and 

convergence: (1) It does not require 

strict synchronization (2) It does not 

allow workers’ progresses to have 

large differences.

• SSP is proven to converge for convex 

loss and bounded staleness.

Leslie G. Valiant 

Worker 1

Worker 2

Worker 3

Worker 4

∆𝜔𝑖
𝑡11

2 𝜔𝑡2

Time

Global Model

No Synchronization

Individual worker push its update ∆𝝎𝒊 to global model 

𝝎 every (k) mini-batch, without waiting for others.

1) Push update ∆𝜔𝑖 to global model 𝜔
2) Pull back whatever global model in the parameter server

3) Proceed training based on the latest 𝜔 in local machine.

ASP: Asynchronous Parallel



A system approach

• The global model is partitioned into K sub-models without 

overlap.

• The sub-models are distributed over K local workers and 

serve as their local models. 

• In each mini-batch, the local workers compute the 

gradients of the local weights by back propagation. 



Dataflow

(Deep learning)

Synchronous

Asynchronous

Data Parallelism Model Parallelism

Iterative

MapReduc

e

(LDA, LR)

Parameter Server

(Deep learning, LDA, 

GBDT, LR)

Irregular Parallelism



Iterative 

MapReduce
• Use MapReduce / 

AllReduce to sync 

parameters among 

workers

• Only synchronous 

update

• Example: Spark and 

other derived 

systems

Local computation

Synchronous 

update



Iterative 

MapReduce

Parameter 

Server

• Parameter server (PS) based 

solution is proposed to 

support: 
• Asynchronous update

• Different mechanisms for 

model aggregation, especially 

in asynchronous manner

• Model parallelism

• Example: 
• Google’s DistBelief; Petuum

• Multiverso PS

+ NIPS’12 DistBelief (Google), NIPS’13 Petuum (Eric Xing), OSDI’14 Parameter server (Mu Li), Multiverso PS… etc. 



Iterative 

MapReduce

Parameter 

Server

Dataflow based solution is 

proposed to support:
• Irregular parallelism (e.g., 

hybrid data- and model-

parallelism), particularly in 

deep learning

• Both high-level abstraction and 

low-level flexibility in 

implementation

Example: 
• Google’s TensorFlowDataflow

+ Tensorflow, Eusys’07 Dryad (Microsoft), NSDI’12 Spark (AMP Lab), CNTK, MXNet… etc. 

Task scheduling & 

execution based on: 

1. Data dependency

2. Resource availability

Dataflow Resource



Computation 

Infrastructure
parallel execution 

engine based on 

gRPC, packup

message, 

communication, etc.

Computation 

allocation 

method
Manual assign to 

devices vs. automatic 

conduct optimized 

allocation 

Parameter 

aggregation 

logic 
Inherent all research 

output from 

parameter server 

side.



The focus is still in Data Parallelism

+ data is huge

+ model is in modest size

+ a cluster of machine are working together to speed 
up the data partition training



• Quick revisit on CNTK

• Mini-tutorial on distributed machine learning
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• Communicate less each time

• Communicate less often

• Asynchronous and Pipelined processing

https://github.com/Microsoft/CNTK/wiki/Multiple-GPUs-and-machines



• quantize gradients to but 1 bit per value with error feedback
• All parameter was decided weather to plus/minus a same value, and carries 

over the rest value to next minibatch

• Delay the updates procedure

0 5 10 15 20 25 30 35

1-bit

float

Transferred Gradient (bits/value), smaller is better

1-Bit Stochastic Gradient Descent and its Application to Data-Parallel Distributed Training of  Speech DNNs, InterSpeech 2014, F. Seide, H. Fu, J. Droppo, G. Li, D. Yu





K. Chen, Q. Huo: “Scalable training of deep learning machines by incremental block training with intra-block parallel optimization and blockwise model-update filtering,” ICASSP 2016



Block Momentum 

K. Chen, Q. Huo: “Scalable training of deep learning machines by incremental block training with intra-block parallel optimization and blockwise model-update filtering,” ICASSP 2016
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Asynchronous and Pipelined processing

Communication barrier in synchronous parallelization asynchronous parallelization



Asynchronous and Pipelined processing

Main Thread (training)

Communication Thread

……….. Training 1 Training

Communication

1 ………..

………..

GPU Buffer

22
Communicatio

n

Fill model 

to gpu

buffer

Prepare 

updates
Prepare 

model

Switch 

buffer



• Sequential SGD
𝑤𝑡+τ+1 = 𝑤𝑡+τ − η ∗ 𝑔 𝑤𝑡+τ

• Async SGD
𝑤𝑡+τ+1 = 𝑤𝑡+τ − η ∗ 𝑔 𝑤𝑡

Delayed communication in asynchronous parallelization



ASGD: 𝑤𝑡+τ+1 = 𝑤𝑡+τ − η 𝑔 𝑤𝑡

DC-ASGD: 𝑤𝑡+τ+1 = 𝑤𝑡+τ − η 𝑔 𝑤𝑡 − λ𝜙(𝑔 𝑤𝑡 ) · (
)

𝑤𝑡+τ −
𝑤𝑡

Training curve for a Resnet

DNN model for cifra-10

A work that directly targets to handle the delay, and it 

is experimentally effective and with convergence 

analysis.









• CNTK is Microsoft’s open-source, cross-platform toolkit for learning and 
evaluating deep neural networks.
• Linux, Windows, docker, .Net

• CNTK expresses (nearly) arbitrary neural networks by composing simple 
building blocks into complex computational networks, supporting relevant 
network types and applications.
• automatic differentiation, deferred computation, optimized execution and memory use

• powerful description language, composability

• implicit time; efficient static and recurrent NN training through batching

• data parallelization, GPUs & servers: 1-bit SGD, Block Momentum

• feed-forward DNN, RNN, LSTM, convolution, DSSM; speech, vision, text

• CNTK is production-ready: State-of-the-art accuracy, efficient, and scales to 
multi-GPU/multi-server.



• Web site: https://cntk.ai/

• Github: https://github.com/Microsoft/CNTK

• Wiki: https://github.com/Microsoft/CNTK/wiki

• Issues: https://github.com/Microsoft/CNTK/issues

mailto:fseide@microsoft.com

CNTK: democratizing the AI tool chain



taifengw@Microsoft.com

mailto:taifengw@Microsoft.com

