R A

2 G PU W%‘Fﬁ% CNTK I TH AR
ErRgy

Taifeng Wang (£ XKUE)
AR FEEE EEFRR

2" Microsoft

Machine Learning Group @ MSRA I Microsolt

. Iﬁf&-wkﬂﬁfrlﬁn I E&ZR150R RIeX , #EIRAR
IRe

« BEESTRRFARIN
(SIGlR/ICML/NIPS/KDD/WWW/AAAI/ WINE/ICTIRE)ZH
SEFEEUE EFE, TR FANEATI(TOIS/TWEB
/Neurocomputlng BElE7R.

. ZV_JFE _JZH%AZVT?E%D%FF/}?HWE
FERAR T EE(CNTK)
EXES |22 (Graph Engine)

?}'-iﬁ%:\?ﬁ e8I TEE(DMTK)

D7~ CHINA
@ HADOOP
Y A SUMMIT

=4

ImageNet: Microsoft 2015 ResNet

28.2 ImageNet Classification top-5 error (%)

6.7
10 .
-

IL.SVRC IL.SVRC IL.SVRC IL.SVRC IL.SVRC IL.SVRC IL.SVRC
2010 NEC 2011 Xerox 2012 2013 Clarifi 2014 VGG 2014 2015 ResNet
America AlexNet GoogleNet

Microsoft had all 5 entries being the 1-st places this year: ImageNet classification,
ImageNet localization, ImageNet detection, COCO detection, and COCO segmentation

2= Microsoft

CHINA
HADOOP
SUMMIT

Microsoft's historic
Speech breakthrougn

Microsoft 2016 research system for
conversational speech recognition

« 5.9% word-error rate
« enabled by CNTK's multi-server scalability

[W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke,
D. Yu, G. Zweig: "Achieving Human Parity in Conversational
Speech Recognition,” https://arxiv.org/abs/1610.05256]

2" Microsoft

Al Is Making Break-through!

Atari Games

Machine Learning, as the driving force, is
entering a new era of big model and big data.

Deep Learning as Driving Force

DNN: Deep Neural Networks

CNN: Convolutional Neural
Networks

RNN: Recurrent Neural
Networks

2= Microsoft

; CHINA
@ HADOOP
Y A SUMMIT

2= Microsoft

Some time cost analysis

» Time cost on train typical DNN models

Model | Hardware _______|Timecost

ResNet on ImageNet K40 * 8 ~ 130 hours
~TM image samples for

1K classes

GoogleNet on ImageNet K40 ~ 570 hours
2000h Speech LSTM K40 ~ 1100 hours

model training

Neural Translation model K40 ~ 2000 hours

; CHINA
{© DHapoop
Q2" sUMMIT

2= Microsoft

How to well utilize computation resources
to speed up the training of big model
over big data?

Distributed Deep Learning

CHINA
@mmm
SUMMIT

Outline
e Quick Overview on CNTK

 Mini-tutorial on distributed machine learning

» Details on CNTK's parallel training

2= Microsoft

CHINA
@HADOOP
SUMMIT

2= Microsoft

Outline
e Quick Overview on CNTK

 Mini-tutorial on distributed machine learning

» Details on CNTK’s parallel training

CHINA

CNTK “Cognitive Joolkit”

CNTK is Microsoft's open-source, cross-platform toolkit for learning and evaluating deep neural
networks.

CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into
complex computational networks, supporting relevant network types and applications.

CNTK is production-ready: State-of-the-art accuracy, efficient, and scales to multi-GPU/multi-
server.

* Linux, Windows, docker, cudnnb, next: CUDA 8
* Python and C++ API (beta; C#/.Net on roadmap)

. CHINA
HADOOP
“ A SUMMIT

Computational Networks

A generalization of machine learning models that can be described as a
series of computational steps.

"CNTK expresses (nearly) arbitrary neural networks by composing simple
building blocks into complex computational networks, supporting relevant
network types and applications!

"CNTK expresses (nearly) arbitrary neural networks by composing simple

building blocks into complex computational networks, supporting relevant
network types and applications!

example: 2-hidden layer feed-forward NN

h1 - G(Wl X+ bl)
h, = o(W3hy+Dby)
P — SOftmaX(Wout h2 + bOUt)

with input x ¢ RM

"CNTK expresses (nearly) arbitrary neural networks by composing simple

building blocks into complex computational networks, supporting relevant
network types and applications!

example: 2-hidden layer feed-forward NN

h1 - G(Wl X+ bl)
h, = o(W3hy+Dby)
P — SOftmaX(Wout h2 + bOUt)

with input x € R™ and one-hot label y € R’
and cross-entropy training criterion

ce =y logP
Zcorpusce = Max

"CNTK expresses (nearly) arbitrary neural networks by composing simple
building blocks into complex computational networks, supporting relevant
network types and applications!

example: 2-hidden layer feed-forward NN

hy = o(Wy X+ by) hl = sigmoid (x @ wl + bl)
hy = (W, hy + by) ‘ h2 = sigmoid (h1 @ w2 + b2)
P = softmax(Woy ho + bou) P = softmax (h2 @ wout + bout)

with input X € R™ and one-hot labely e R’
and cross-entropy training criterion

ce =y logP ce = cross_entropy (P, Yy)
z:corpusce = Mmax

"CNTK expresses (nearly) arbitrary neural networks by composing simple
building blocks into complex computational networks, supporting relevant
network types and applications!

hl = sigmoid (x @ wl + bl)
h2 = sigmoid (hl @ w2 + b2)

P = softmax (h2 @ wout + bout)
ce = cross_entropy (P, y)

"CNTK expresses (nearly) arbitrary neural networks by composing simple
building blocks into complex computational networks, supporting relevant
network types and applications!

'

C Cross_entropy
A A

)

p
(. softmax)

)]

iy

s
N
0 >

y

-

hl
h2

ce

sigmoid (x @ wl + bl)
sigmoid (hl @ w2 + b2)
softmax (h2 @ wout + bout)
cross_entropy (P, Yy)

"CNTK expresses (nearly) arbitrary neural networks by composing simple
building blocks into complex computational networks, supporting relevant
network types and applications!

L .

C aosentony) nodes: functions (primitives)
F * can be composed into reusable composites

(. softmax)
* edges: values
* incl. tensors, sparse

* automatic differentiation
« 3F / din = aF / dout - dout / din

* deferred computation = execution engine
* editable, clonable

)]

iy

LEGO-like composability allows CNTK to support
wide range of networks & applications

s
N
> >

y

CNTK Architecture

 Select right reader and learner to do an LEGO-
like training

« Describe network as Computation Network

* Using Simple Network Builder, Brainscript or
python to build Computation Network

CNTK

reader network learner

« task-specific * network « SGD
deserializer definition (momentum,

« automatic « CPU/GPU AdaGrad, ...)
randomization execution « minibatching,

engine packing,

padding

a Microsoft

2= Microsoft

C N T K B e n C h m a rk http://github.com/Microsoft/cntk

Speed Comparison for Single GPU Training Speed Comparison for parallel Training
meausred by iterations*/second, higher=better Measured by iterations / second, higher = better
40 25
35
20
30

25 15

20
10
15
. 1B III [
0
III III I Il

9]

0 FCN-5 FCN-5, 2 GPUs FCN-5, 4 GPUs FCN-5, 8 GPUs(2
FCN-5 FCN-8 AlexNet ResNet LSTM-32 LSTM-64 nodes)
m Caffe EWCNTK B MXNet TensorFlow Torch m Caffe W CNTK ® TensorFlow Torch
* [Iteration here means a (mini-batch) update. * CNTK has 1bit SGD enabled.
o “affzarasn’t suoport RNN/USTM computation, » Lallthe exerirazrt i ~arred o bnszd on IFCN -5 model with
* Ekxperiment with [litanX GPU synchranous data parallel algorithm on K40 CPUs with

- C : YN Infnithond -onrection,
. FIINSSE5% - Fulviicnhecte I nist e r ¢ wii n'd fi3 fe Ny ayers |

* AlexNet/ResNet — typica: convolutional network for image classification ,/
rec.qriiticn
. LM, 32/ 6475 %0 the LSTV mcdowr@ litra avariasce) wivd®a eo [\a.chisz?

CHINA
@HADOOP
SUMMIT

http://github.com/Microsoft/cntk

Outline

 Mini-tutorial on distributed machine learning

» Details on CNTK's parallel training

2= Microsoft

CHINA
HADOOP

2= Microsoft

Data Parallelism *
- .

1. Partition the training data

2. Parallel training on different machines

3. Synchronize the local updates

4. Refresh the local model with new
parameters, go to 2.

i
i
\

CHINA

BSP: Bulk Synchronous

Parallel Leslie G. Valiant
Global Model

Worker 11 >\ > I:>

>

13l

Worker 2 EImm)y

>

Worker 3 :>
Worker 4 :>

=)
—

Synchronization

)

=)
=)

Time

Individual workers synchronize with each other every (k)

mini-batch:

1) Aggregate Aw;'s from all workers to refine global model w.

2) Broadcast global model w back to each worker.

3) After receiving new global model, each worker starts next

step of training.

A

SSP: Stale Synchronous

Parallel
Global Model
\\::\\ t
@Lr0f ™ ‘9 w | Finished Iteration #2
\l\\
Worker 11 A > ' — —
When staleness=3,

Worker 2 | > I > I > I > B worker 3 will wait for

Worker 3 :>|:> :>|:>|:>

worker 1 to catch

—

) m—)) =

Worker 4 '

N

Finished lteration #5

No Synchronization until staleness threshold is hit

»

Time

Individual worker pushes update Aw; to global model
o every (k) mini-batch, until notice that another
worker is s steps behind. Thus SSP tradeoffs between

BSP and ASP.
1) Whens = 0,SSP = BSP.
2) When s = o0, SSP = ASP.

ASP: Asynchronous Parallel

Global Model
A 0Aw}1‘ 9 w®
Worker 11 > ' > ' >| >

Worker 2|:>|:>|:>I:>I:>
Worker 3 EE) EE) EE) ':>':> ':>':>
Worker 4 :>|:> :>|:>|:>

No Synchronization _

Time

Individual worker push its update Aw; to global model
w every (k) mini-batch, without waiting for others.

1) Push update Aw; to global model w

2) Pull back whatever global model in the parameter server
3) Proceed training based on the latest w in local machine.

2= Microsoft

Model Parallelism

A system approach

« The global model is partitioned into K sub-models without
overlap.

« The sub-models are distributed over K local workers and
serve as their local models.

* In each mini-batch, the local workers compute the
gradients of the local weights by back propagation.

; CHINA
{© DHapoop
N SUMMIT

2= Microsoft

Fvolution of Distributed ML Architectures

Dataflow
(Deep learning)

Asynchronod%s

Parameter Server
(Deep learning, LDA,
GBDT, LR)

Synchronougﬁ Iterative
‘ MapReduc
e

i ! |
Data Parallelism Model Parallelism Irregular Parallelism

2= Microsoft

Fvolution of Distributed ML Architectures

Iterative

MapReduce

-~

Local computation

Synchronous
update

_

~

Use MapReduce /
AllReduce to sync
parameters among
workers

Only synchronous
update

Example: Spark and
other derived
systems

; CHINA
@ HADOOP
Y A SUMMIT

2= Microsoft

Fvolution of Distributed ML Architectures

/ \ Parameter server (PS) based

solution is proposed to

support:
* Asynchronous update
Parameter Different mechanisms for
model aggregation, especially
in asynchronous manner
* Model parallelism

« Example:
« Google's DistBelief; Petuum

 Multiverso PS

Server

+ NIPS'12 DistBelief (Google), NIPS'13 Petuum (Eric Xing), OSDI'14 Parameter server (Mu Li), Multiverso PS... ett.

; CHINA
{© DHapoop
Q2" sUMMIT

2= Microsoft

Fvolution of Distributed ML Architectures

Dataflow based solution is

proposed to support:
Irregular parallelism (e.qg.,
hybrid data- and model-
parallelism), particularly in
deep learning
Both high-level abstraction and
low-level flexibility in
implementation

v
(¢
5o | <000

U alle=ile=i)

Example:
Google's TensorFlow

Dataflow

+ Tensorflow, Eusys'07 Dryad (Microsoft), NSDI'12 Spark (AMP Lab), CNTK, MXNet... etc.

CHINA
@HADOOP
SUMMIT

2= Microsoft

A Summary for Distributed ML System

Computation Computation Parameter

Infrastructure allocation aggregation
parallel execution method logic

engine based on Manual assign to Inherent all research
gRPC, packup devices vs. automatic output from

message, conduct optimized parameter server
communication, etc. allocation side.

HADOOP
SUMMIT

2= Microsoft

Industrial Practice

The focus is still in Data Parallelism

+ data is huge
+ model is in modest size

+ a cluster of machine are working together to speed
up the data partition training

CHINA
@mmm
SUMMIT

Outline

» Details on CNTK's parallel training

2" Microsoft

CHINA
HADOOP
SUMMIT

CNTK's scale up experiment

Almost linear speed up from
within node to cross node

25

20

2= Microsoft

Speed Comparison for parallel Training
Measured by iterations / second, higher = better

FCN-5

FCN-5, 2 GPUs FCN-5, 4 GPUs FCN-5, 8 GPUs(2 nodes)

B Caffe W CNTK ®TensorFlow Torch

https://github.com/guolinke/deep-learning-benchmarks

2= Microsoft

CNTK Deep dive: data-parallel training

- data-parallelism: distribute each minibatch over workers, then aggregate
« challenge: communication cost

« example: DNN, MB size 1024, 160M model parameters

« compute per MB: - 1/7 second
« communication per MB: -2 1/9 second (640M over 6 GB/s)
« can't even parallelize to 2 GPUs: communication cost already dominates!

2= Microsoft

To tackle the parallelization problem

« Communicate less each time
- 1 Dbit SGD

« Communicate less often
- Auto mini batch sizing
- Block momentum

» Asynchronous and Pipelined processing
« - ASGD with Multiverso

https://github.com/Microsoft/CNTK/wiki/Multiple-GPUs-and-machines

2" Microsoft

T-pit SGD

 quantize gradients to but 1 bit per value with error feedback

* All parameter was decided weather to plus/minus a same value, and carries
over the rest value to next minibatch

 Delay the updates procedure

Transferred Gradient (bits/value), smaller is better

float
1-bit

0 5 10 15 20 25 30 35

1-Bit Stochastic Gradient Descent and its Application to Data-Parallel Distributed Training of Speech DNNS, InterSpeech 2014, E Seide, H. Fu, J. Droppo, G. Li, D. Yu

2= Microsoft

Using 1Bit technique of CNTK
Available on both Python and C++

Brainscript(CNTK recelipt)

SGD = [

ParallelTrain = [
DataParallelsGD = [
gradientBits = 1

1

parallelizationStartEpoch = 2 # warm start: don't use 1-bit SGD for first epoch

]

Autohdijust = [
autofdjustMinibatch = true # enable automatic growing of minibatch size

minibatchSizeTuningFrequency = 3 # try to enlarge after this many epochs

Python script

from cntk import distributed
distributed after = epoch_size # number of samples to warm start with
distributed_trainer = distributed.data_parallel distributed trainer(

num_quantization_bits = 1,

distributed_after = distributed_after) # warm start: don't use 1-bit S5GD for first epo

minibatch_source = MinibatchSource(
aor
distributed after = distributed after) # minibatch source becomes distributed after wa
trainer = Trainer(z, ce, pe, learner, distributed trainer)

distributed.Communicator.finalize() # must call this to finalize MPI, otherwise proce:

2= Microsoft

Block momentum

 Select randomly an unprocessed data block denoted as Dy
« Distribute N splits of D; to N parallel workers

« Starting from an initial model denoted as W+ (t), each worker optimizes its
local model independently by 1-sweep mini-batch SGD with momentum trick

. Average N optimized local models to get W(t)

K. Chen, Q. Huo: “Scalable training of deep learning machines by incremental block training with intra-block parallel optimization and blockwise model-update filtering,” ICASSP 2016

2= Microsoft

Block momentum

Generate model-update resulting from data block Dy
G(t) = W(t)-W ;e ()
Calculate global model-update:
A(t) =1 - At —1) + ¢ - G(t)
* ¢;. Block Learning Rate (BLR)

¢ Block Momentum (BM)
* Wheng¢; =1andn, =0-> MA

Update global model

Wi)=w(t—1)+ A(t)
Generate initial model for next data block
 Classical Block Momentum (CBM)
Winice(t +1) = W(t)
- Nesterov Block Momentum (NBM)
Winie(t +1) = W(t) +n¢yq - A(L)

K. Chen, Q. Huo: "Scalable training of deep learning machines by incremental block training with intra-block parallel optimization and blockwise model-update filtering,” ICASSP 2016

2= Microsoft

Block momentum

» Training data: 2,6/0-hour speech
from real traffics of VS, SMD, and
Cortana

1bit/BMUF Speedup Factors in LSTM Training

« About 16 and 20 days to train DNN “° [e
and LSTM on 1-GPU, respectively
» Philly is too busy in 1/O traffics: o e a0
» Peak speedup factor I
- Average speedup factor

K. Chen, Q. Huo: "Scalable training of deep learning machines by incremental block training with intra-block parallel optimization and blockwise model-update filtering,” ICASSP 2016

2= Microsoft

Using BMUF in CNTK

Available on C++

Brainscript(CNTK receipt)

learningRatesPerSample=0.0005
0.0005 is the optimal learning rate for single-GPU training.
Use it for BlockMomentumSGD as well
ParallelTrain = [
parallelizationMethod = BlockMomentumSGD
distributedMBReading = true
syncPerfStats = 5
BlockMomentumSGD=[
syncPeriod = 120000
resetSGDMomentum = true
useNesterovMomentum = true

2= Microsoft

Asynchronous and Pipelined processing

Multiverso parameter server

Communication barrier in synchronous parallelization asynchronous parallelization

—

Asynchronous and Pipelined processing

« (lient side pipeline on GPU side to enhance throughput

« Hide communication latency.

« Optimized iff the computational cost are equal to communicational cost

Prepare
model

Prepare
updates
\
GPU Buffer \
T \

SN, S

Main Thread (training)

Communication Thread

Fill model
to gpu

Switch
buffer

buffer

2= Microsoft

2= Microsoft

A issue for async algorithm

Delayed communication in asynchronous parallelization

» Sequential SGD

Wiprs1 = Wegr — N * g(Weyo)
* Async SGD

Wigrs1 = Wegr — N * g(We)

2= Microsoft

Delay Compensated ASGD (DC-ASGD)

7 oo oosososoooooooooooooe- . Training curve for a Resnet
| DNN model for cifra-10

o e e e = = = = = = = = = e = = = e = e = e = e = e = e = e = e = e = e = e = e = e = = =

DC-ASGD: Weprt1 = Wepr — NgWe) — Ap(g(We)) - (Weyr —

" ‘Wt‘) -- /

A work that directly targets to handle the delay, and it

Is experimentally effective and with convergence
analysis.

2= Microsoft

The experimental result

Multiverso parameter server
- High speed infrastructure
- Advanced async algorithm

2= Microsoft

sing ASGD in CNTK

Available on C++

Brainscript(CNTK receipt)

learningRatesPerSample = 0.0005

ParallelTrain = [
parallelizationMethod = DataParallelASGD
distributedMBReading = true
syncPerfStats = 20
DataParallelASGD = [
syncPeriodPerWorker=256
usePipeline = true
AdjustLearningRateAtBeginning = [
adjustCoefficient = 0.2
adjustNBMiniBatch = 1024
Learning rate will be adjusted to original one after ((1 / adjustCoefficient) * adjustNBMiniBatch) samples
which is 5120 in this case

m

Summary

B Microsoft

conclusion

* CNTK is Microsoft's open-source, cross-platform toolkit for learning and
evaluating deep neural networks.
* Linux, Windows, docker, .Net

* CNTK expresses (nearly) arbitrary neural networks by composing simple
building blocks into complex computational networks, supporting relevant
network types and applications.

* automatic differentiation, deferred computation, optimized execution and memory use
* powerful description language, composability

* implicit time; efficient static and recurrent NN training through batching

* data parallelization, GPUs & servers: 1-bit SGD, Block Momentum

* feed-forward DNN, RNN, LSTM, convolution, DSSM; speech, vision, text

* CNTK is production-ready: State-of-the-art accuracy, efficient, and scales to
multi-GPU/multi-server.

CNTK: democratizing the Al tool chain '

e \Web site: https://cntk.ai/

e Github: https://github.com/Microsoft/CNTK
o« Wiki: https://github.com/Microsoft/CNTK/wiki
e |ssyes: https://github.com/Microsoft/CNTK/issues

Mmailto:fseide@microsoft.com

Thanks

More information please find in:

http://cntk.ai
http://www.dmtk.io

Contact
Taiteng Wang — taitengw@Microsoft.com

mailto:taifengw@Microsoft.com

