Hortonworks

Improvements In compactions

!

Ted Yu

2

Agenda

Date Tiered Compaction
In memory compaction
Q/A

Hm © Hortonworks Inc. 2014

About myself

Been working on HBase for 6 years
HBase committer / PMC
Senior Staff Engineer at Hortonworks

Hm © Hortonworks Inc. 2014 Page

Date Tiered Compaction

Inspired by Cassandra’s Date Tiered Compaction

Write access pattern is mainly sequential writes by
time of data arrival

Read access pattern is mainly time-range scans

Hm © Hortonworks Inc. 2014 Page

Date Tiered Compaction Cont'd

Figure 2. base window = 1 hour, windows per tier = 4

* New time windows appear

- Old ones get merged into exponentially larger
windows
* From https://labs.spotify.com/2014/12/18/date-tiered-compaction/

m © Hortonworks Inc. 2014 Page 5

https://labs.spotify.com/2014/12/18/date-tiered-compaction/
https://labs.spotify.com/2014/12/18/date-tiered-compaction/
https://labs.spotify.com/2014/12/18/date-tiered-compaction/
https://labs.spotify.com/2014/12/18/date-tiered-compaction/
https://labs.spotify.com/2014/12/18/date-tiered-compaction/
https://labs.spotify.com/2014/12/18/date-tiered-compaction/

Major config parameters

Base window: smallest time window for first tier

Windows per tier: scale factor of window sizes from
one tier to the next

Max storefile age: how old it has to be before
compaction stops — biggest tier

Incoming windows threshold: number of files in
Incoming window before we compact to first tier

http://hbase.apache.org/book.html#ops.date.tiered

Hm © Hortonworks Inc. 2014 Page 6

Benefits of Date Tiered Compaction

Better granularity beyond major compaction intervals
for efficient timespan scans

Reduced 10 cost of compactions
Efficient data rentention
Better performance, lower latency

Hm © Hortonworks Inc. 2014 Page

Date Tiered Compaction Cont'd

HFiles are ordered by sequence Id

Max timestamp is used to determine order of files and
compaction window as secondary order

Plugged-in per-window compaction policy to reduce
wasteful compaction

Suitable for time series data loaded periodically with
minimum time range overlap ... and more cases

Hm © Hortonworks Inc. 2014 Page

Date Tiered Compaction Cont'd

For the files carrying the following (seqld, timestamp)
pairs:

(1,0), (2, 13), (3,3), (4,10), (5,11), (6,1), (7,2), (8,12),
(9,14), (10,15)

After scan and update:

(1,0), (2, 13), (3,13), (4,13), (5,13), (6,13), (7,13), (8,13),
(9,14), (10,15)

Date Tiered Compaction Cont'd

Undesirable scenario: file on the lower tier has long
tails

HBASE-15400, major and minor compactions with
splitting by window boundaries will help

All servers in the cluster will promote windows to
higher tier at the same time

using a compaction throttle is recommended

Hm © Hortonworks Inc. 2014 Page 10

Date Tiered Compaction Cont'd

This compaction policy is unsuitable for following
cases

future timestamp is used in writes

frequent deletes and updates

random gets without a time range

bulk load of heavily overlapping time-range data

Hm © Hortonworks Inc. 2014 Page 11

Perf Validation (days after turned on)

*HDFS Read Bytes Mapper Run Time Minutes
2.00E+15 35
1.80E+15 \
30 .
1.60E+15
25
1.40E+15
1.20E+15 20
1.00E+15
15
8.00E+14
10
6.00E+14
4.00E+14 S -
2.00E+14 0 NN MM
0.00E+00 0 2 4 6 8 10
0 2 4 6 8 10 12 e=(==7-day job(avg) 1-day job(avg)
e=o==T7-day job 1-day job 7-day job(std dev) 1-day job(std dev)

Hm © Hortonworks Inc. 2014 Page 12

Dynamic Content Processing

» Sieve — Yahoo's real-time content management
platform

* Real-time content processing pipelines
- Storage and notifications on the same platform

Apache Storm
— —
Link
Analysis

Content

Apache HBase

/

Hm © Hortonworks Inc. 2014

Page 13

Serving

Workload Characteristics

Small working set but not necessarily a FIFO queue
Short life-cycle delete message after processing it
High-churn workload message state can be updated

Frequent scans for consuming message

Hm © Hortonworks Inc. 2014 Page 14

Two Basic ldeas

In-Memory Compaction

Exploit redundancies in the workload to eliminate
duplicates in memory

Gain is proportional to the duplicate ratio
In-Memory Index Reduction

Reduce the index memory footprint, less overhead per
cell

Gain is proportional to the cell size

Prolong in-memory lifetime, before flushing to disk
»Reduce write amplification effect (overall 1/O)
»Reduce retrieval latencies

Hm © Hortonworks Inc. 2014 Page 15

In-Memory Compaction Design

- Random writes are absorbed in an active segment

- When active segment is full
— Becomes immutable segment (snapshot)
— A new mutable (active) segment serves writes
— Flushed to disk, truncate WAL

- On-Disk compaction reads a few files, merge-sorts them, writes

back new files
DefaultMemStore

--------- 2L T T T TTT T WAL

Hfiles

|
¥
|
|
|
|
1
|
1
|

m © Hortonworks Inc. 2014 Page 16

HBase Reads

- Random reads from active segment or snapshot or
Hfiles (Block Cache)

- When data piles-up on disk
— Hit ratio drops and retrieval latency up

- Compaction re-writes small files into fewer bigger
files

Snap-
shot
memory | HDFS

Hm © Hortonworks Inc. 2014 Page 17

In-Memory Compaction

Active segment flushed to pipeline
Pipeline segments compacted in memory
Flush to disk only when needed

Elc}ck cache

|
|
|
|
in-memory-flush :||||||||||WAL

|

Compaction :

pipeline l Hfiles
|
|
I flush
|
memory : HDFS

m © Hortonworks Inc. 2014 Page 18

In-Memory Flush and Compaction

—_—

Compaction
pipeline e

flush-to-disk

memory | HDFS

Hm © Hortonworks Inc. 2014 Page 19

In-Memory Compaction: tradeoffs

- Trade read cache (BlockCache) for write cache
(compaction pipeline)

LITTTTTTT] wWAL

—_—

in-memory-flush
Blﬂﬂk l —
Compaction cache Hfiles
pipeline —

prepare-for-flush

[snapshot flush-to-disk

memory | HDFS

Hm © Hortonworks Inc. 2014 Page 20

In-Memory Compaction

* Trade CPU cycles for less I/O

Block cache

Compaction
pipeline

memory

Hm © Hortonworks Inc. 2014

LITTTTTTT] WAL

HDFS

} Hfiles

Page 21

In-Memory Working Set

YCSB: compares Compacting vs. Default MemStore
Small cluster: 3 HDFS nodes on a single rack, 1 RS

High-churn workload, small working set
—128,000 records, 1KB value field
—10 threads running 5 millions operations, various key distributions
—50% reads 50% updates, target 10000ps
—1% (long) scans 99% updates, target 5000ps
Measure average latency over time
—Latencies accumulated over intervals of 10 seconds

Hm © Hortonworks Inc. 2014 Page 22

Read Latency (Zipfian Distribution)

Zipfian [Read 50% - Write 50%) - Read Latency

2500

——compacting

—default

096k
-1
094
oSk
09ER
orr
iy
OTBE
09LE
0T9E
09rE
OTEE
091E
OTOoE
0982
0TLe

£ 095C

OTkE

e
s

0961
018l
0991
]89!
09ET
ozt
0901
016
09t
019
09
OTE
)8
ot

Timeline (seconds)

Page 23

© Hortonworks Inc. 2014

s

Read Latency (Uniform Distribution)

Uniform (Read 50% - Write 50%) - Read Latency

A 50000
——compacting
default
3000
2500
T
3 2000
=
[
=
]
= 1500
|}

1000

S00

SE22S22282828232823282828282¢88¢8
e D ALY = B o = 3] 4 (T = 3 =i a4 = = o = D = & =
L I e B I B I o T R o (O e I e I e T T s T T T s | =r =

4510
m |
4810 |
4950

Timeline (seconds)

Hm © Hortonworks Inc. 2014 Page 24

Scan Latency (Uniform Distribution)

Uniform (Scan 20K 99% - Write 1%) - Scan Latency
250000

——compacting

——default

200000

150000

Latency (us)

50000

m © Hortonworks Inc. 2014 Page 25

Read Latency(Zipfian Distribution) Handling
Tombstones

Zipfian (Read 40% - Write 40% - Delete 20%) - Read Latency

1200
——compacting (lotal 2 flushes and 1 disk compactions)
1000 —default (total 15 flushes and 4 disk compactions)
s & & &
L
200

Latency (us)
4]
3

) A Y
!*1# r"'lx “"ITLI‘ *I " W

200

11]5

160
310
460
610
760
910
1060
1210
1360
1510
1660
1810
| 1950 ¢
2110 ¢
2260
2410
2560
2710
2860
3010
3160
3310
3460
3610
3760
3910
4060 ¢
4210 |
4360
4510
4660
4810
4960

Timeline (seconds)

m © Hortonworks Inc. 2014 Page 26

Read Latency (Uniform Distribution)

1800

1&00

1400

1200

Latency (us)
s $

:

:

200y

Uniform (Read 40% - Write 40% - Delete 20%) - Read Latency

——compacting (total 3 flushes and 2 disk pompactions)
(total 15 flushes and 4 disk compactions)

& F-g Vg Vg

o

—default

mJ Ir"'" _ o

EEEEE@EEE@EEEEEEEEEEEEEEE%EEE%EE

M =T WS P~ O e B Y oy Oy = W) — B = an [] =]

HHHHHHH Nﬁﬁﬁrﬂﬂmmmﬁ;mmm ?-:r-:r #-d'
Timeline (seconds)

Hm © Hortonworks Inc. 2014 Page 27

Scan Latency (Zipfian Distribution)

Zipfian (Scan 20k 1% - Write 66% - Delete 33%) - Scan Latency
250000 -

———compacting

200000 ——default

Latency (us)

m © Hortonworks Inc. 2014 Page 28

Immutable Segment

*

Efficient iIndex representation
Concurrent

Skip-List

(0)

IIVPEEEE KT R

WO
WeOooW

.-.-.-.-.-a.-.-_.-.-.-

T Jcicntfivmoaaleasbtbcccseebs s
wera opood Fiesddafil I"r{jg‘_n_l_:gg:_-;g_ """""" g e
M SLAB bvpiazzeted eiovabeannaaary SRR
el rr addngohh
- i § .ﬂr 9 ¥
1% o i] l f-.
1 ’ il i » LI W

Hm © Hortonworks Inc. 2014

J\

The ‘ordering”
englne

CE” redirecting

DbjEEl'S

Bytes for the entire
~ Cell's information

Page 29

No Dynamic Ordering for Immutable
Segment

New Immutable Segment

Cell Array
binary search
to the cell’s info

[N L
Vi SETTAETIEST St SR

) B
phooHilesd deiu
AP T T o) Ol)

;;;;;;;;;
LT e T et L,

\\\\\\\\\\\\\\\\\\\\\

Hm © Hortonworks Inc. 2014 Page 30

Exploit the Immutabllity of a Segment after
Compaction

= New Design: Flat layout for immutable segments index
—Less overhead per cell
—Manage (allocate, store, release) data buffers off-heap

Pros
—Better utilization of memory and CPU
—Locality in access to index
—Reduce memory fragmentation
—Significantly reduce GC work

Hm © Hortonworks Inc. 2014 Page 31

New Design: Putting it all together

Are there redundancies
to compact?

Flatten the index —
less overhead per
cell

prepare-for-flush

Snap-
shot

L{W

Flatien the index &
compact-fewer cells
& less overhead per

ﬁ'l-

LI T T T T TPTT T WAL

Hfiles

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

flush-to-disk

Hm © Hortonworks Inc. 2014

bry ' HDFS

Page 32

(sn) Aoumen

O |5

QO |3

o | &

<

> |8

M e

o & . s

S |2 § %

A e | 2 |5

|8 3 |
d%m

SEAERE

O |5 | & |8

C |5 | 3 |38

Q [~ ||]

Jd

@

—

o | & m

O

nd

0095
(EF R4
I+ES
0LeES
OE0S
O5GH
Desy
OESt
0a5t
DEFY
DoE+
OLLY
0¥l
DLBE
OBLE
0S3E
DESE
DGEE
D9eE
DELE
Q0oE
1A e
Ovid
OL8e
oaFe
OSEZ
DEEe
DEG:
(96 |
OERL
DOLL
0451
Ol
DLEL
(=1
OSh
A

064

0o

0ES

nov

O

Ol

"

Timeline (seconds)

Page 33

© Hortonworks Inc. 2014

5 3
8 £
£ 8
s 3
0 £ =
F | |
O |2
[y
O |z
N |3
— | £
ul
Il | w
1 | R
> 2
O | E
cC | £
Q |5
e
®
—
2 e & & 8§ &§ -
(sn) Aouae
¥

Ol¥t
DlEy
BLEY
BLL¥
ILOY
OLBE
(LHE
OhLE
GLoE
IL5E
IL¥E
OLEE
GLeE
GLLE
GLOE
DLEE
OLBE
DEHLE
(HR=T
LS
Bl¥e
DLEE
ohie
OLLe
(R
BLEL
aLeL
OLLL
H 3
(L
Ol
BLEL
QLEL
OLLL
GLok
]
)
)

oLe
oLS

DL
OLE

OLc

ok

oL

Timeline (seconds)

Page 34

© Hortonworks Inc. 2014

Q/A

Hm © Hortonworks Inc. 2014 Page 35

Thank you.

