
© Hortonworks Inc. 2014

Improvements in compactions

Ted Yu

Page 1

© Hortonworks Inc. 2014

Agenda

• Date Tiered Compaction

• In memory compaction

• Q/A

Page 2

© Hortonworks Inc. 2014

About myself

• Been working on HBase for 6 years

• HBase committer / PMC

• Senior Staff Engineer at Hortonworks

Page 3

© Hortonworks Inc. 2014

Date Tiered Compaction

• Inspired by Cassandra’s Date Tiered Compaction

• Write access pattern is mainly sequential writes by

time of data arrival

• Read access pattern is mainly time-range scans

Page 4

© Hortonworks Inc. 2014

Date Tiered Compaction Cont’d

• New time windows appear

• Old ones get merged into exponentially larger

windows
• From https://labs.spotify.com/2014/12/18/date-tiered-compaction/

Page 5

https://labs.spotify.com/2014/12/18/date-tiered-compaction/
https://labs.spotify.com/2014/12/18/date-tiered-compaction/
https://labs.spotify.com/2014/12/18/date-tiered-compaction/
https://labs.spotify.com/2014/12/18/date-tiered-compaction/
https://labs.spotify.com/2014/12/18/date-tiered-compaction/
https://labs.spotify.com/2014/12/18/date-tiered-compaction/

© Hortonworks Inc. 2014

Major config parameters

• Base window: smallest time window for first tier

• Windows per tier: scale factor of window sizes from

one tier to the next

• Max storefile age: how old it has to be before

compaction stops – biggest tier

• Incoming windows threshold: number of files in

incoming window before we compact to first tier

• http://hbase.apache.org/book.html#ops.date.tiered

Page 6

© Hortonworks Inc. 2014

Benefits of Date Tiered Compaction

• Better granularity beyond major compaction intervals

for efficient timespan scans

• Reduced IO cost of compactions

• Efficient data rentention

• Better performance, lower latency

Page 7

© Hortonworks Inc. 2014

Date Tiered Compaction Cont’d

• HFiles are ordered by sequence Id

• Max timestamp is used to determine order of files and

compaction window as secondary order

• Plugged-in per-window compaction policy to reduce

wasteful compaction

• Suitable for time series data loaded periodically with

minimum time range overlap … and more cases

Page 8

© Hortonworks Inc. 2014

Date Tiered Compaction Cont’d

• For the files carrying the following (seqId, timestamp)

pairs:

• (1,0), (2, 13), (3,3), (4,10), (5,11), (6,1), (7,2), (8,12),

(9,14), (10,15)

• After scan and update:

• (1,0), (2, 13), (3,13), (4,13), (5,13), (6,13), (7,13), (8,13),

(9,14), (10,15)

Page 9

© Hortonworks Inc. 2014

Date Tiered Compaction Cont’d

• Undesirable scenario: file on the lower tier has long

tails

• HBASE-15400, major and minor compactions with

splitting by window boundaries will help

• All servers in the cluster will promote windows to

higher tier at the same time

• using a compaction throttle is recommended

Page 10

© Hortonworks Inc. 2014

Date Tiered Compaction Cont’d

• This compaction policy is unsuitable for following

cases

• future timestamp is used in writes

• frequent deletes and updates

• random gets without a time range

• bulk load of heavily overlapping time-range data

Page 11

© Hortonworks Inc. 2014

Perf Validation (days after turned on)

Page 12

© Hortonworks Inc. 2014

Dynamic Content Processing

• Sieve – Yahoo’s real-time content management

platform

• Real-time content processing pipelines

• Storage and notifications on the same platform

Page 13

© Hortonworks Inc. 2014

Workload Characteristics

• Small working set but not necessarily a FIFO queue

• Short life-cycle delete message after processing it

• High-churn workload message state can be updated

• Frequent scans for consuming message

Page 14

© Hortonworks Inc. 2014

Two Basic Ideas

• In-Memory Compaction

Exploit redundancies in the workload to eliminate

duplicates in memory

Gain is proportional to the duplicate ratio

• In-Memory Index Reduction

Reduce the index memory footprint, less overhead per

cell

Gain is proportional to the cell size

• Prolong in-memory lifetime, before flushing to disk

Reduce write amplification effect (overall I/O)

Reduce retrieval latencies

Page 15

© Hortonworks Inc. 2014

In-Memory Compaction Design

• Random writes are absorbed in an active segment

• When active segment is full

– Becomes immutable segment (snapshot)

– A new mutable (active) segment serves writes

– Flushed to disk, truncate WAL

• On-Disk compaction reads a few files, merge-sorts them, writes

back new files

Page 16

© Hortonworks Inc. 2014

HBase Reads

• Random reads from active segment or snapshot or

Hfiles (Block Cache)

• When data piles-up on disk

– Hit ratio drops and retrieval latency up

• Compaction re-writes small files into fewer bigger

files

Page 17

© Hortonworks Inc. 2014

In-Memory Compaction

Active segment flushed to pipeline

Pipeline segments compacted in memory

Flush to disk only when needed

Page 18

© Hortonworks Inc. 2014

In-Memory Flush and Compaction

Page 19

© Hortonworks Inc. 2014

In-Memory Compaction: tradeoffs

• Trade read cache (BlockCache) for write cache

(compaction pipeline)

Page 20

© Hortonworks Inc. 2014

In-Memory Compaction

• Trade CPU cycles for less I/O

Page 21

© Hortonworks Inc. 2014

In-Memory Working Set

• YCSB: compares Compacting vs. Default MemStore

• Small cluster: 3 HDFS nodes on a single rack, 1 RS

• High-churn workload, small working set

–128,000 records, 1KB value field

–10 threads running 5 millions operations, various key distributions

–50% reads 50% updates, target 1000ops

–1% (long) scans 99% updates, target 500ops

• Measure average latency over time

–Latencies accumulated over intervals of 10 seconds

Page 22

© Hortonworks Inc. 2014

Read Latency (Zipfian Distribution)

Page 23

© Hortonworks Inc. 2014

Read Latency (Uniform Distribution)

Page 24

© Hortonworks Inc. 2014

Scan Latency (Uniform Distribution)

Page 25

© Hortonworks Inc. 2014

Read Latency(Zipfian Distribution) Handling

Tombstones

Page 26

© Hortonworks Inc. 2014

Read Latency (Uniform Distribution)

Page 27

© Hortonworks Inc. 2014

Scan Latency (Zipfian Distribution)

Page 28

© Hortonworks Inc. 2014

Efficient index representation

Page 29

© Hortonworks Inc. 2014

No Dynamic Ordering for Immutable

Segment

Page 30

© Hortonworks Inc. 2014

Exploit the Immutability of a Segment after

Compaction

 New Design: Flat layout for immutable segments index

–Less overhead per cell

–Manage (allocate, store, release) data buffers off-heap

• Pros

–Better utilization of memory and CPU

–Locality in access to index

–Reduce memory fragmentation

–Significantly reduce GC work

Page 31

© Hortonworks Inc. 2014

New Design: Putting it all together

Page 32

© Hortonworks Inc. 2014

Read Latency -- 100Byte Cell

Page 33

© Hortonworks Inc. 2014

Read Latency -- 1K Cell

Page 34

© Hortonworks Inc. 2014

Q/A

Page 35

© Hortonworks Inc. 2014

Thank you.

Page 36

