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About myself

Been working on HBase for 6 years
HBase committer / PMC
Senior Staff Engineer at Hortonworks
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Date Tiered Compaction

Inspired by Cassandra’s Date Tiered Compaction

Write access pattern is mainly sequential writes by
time of data arrival

Read access pattern is mainly time-range scans
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Date Tiered Compaction Cont'd

Figure 2. base window = 1 hour, windows per tier = 4

* New time windows appear

- Old ones get merged into exponentially larger
windows
* From https://labs.spotify.com/2014/12/18/date-tiered-compaction/
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Major config parameters

Base window: smallest time window for first tier

Windows per tier: scale factor of window sizes from
one tier to the next

Max storefile age: how old it has to be before
compaction stops — biggest tier

Incoming windows threshold: number of files in
Incoming window before we compact to first tier

http://hbase.apache.org/book.html#ops.date.tiered
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Benefits of Date Tiered Compaction

Better granularity beyond major compaction intervals
for efficient timespan scans

Reduced 10 cost of compactions
Efficient data rentention
Better performance, lower latency
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Date Tiered Compaction Cont'd

HFiles are ordered by sequence Id

Max timestamp is used to determine order of files and
compaction window as secondary order

Plugged-in per-window compaction policy to reduce
wasteful compaction

Suitable for time series data loaded periodically with
minimum time range overlap ... and more cases
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Date Tiered Compaction Cont'd

For the files carrying the following (seqld, timestamp)
pairs:

(1,0), (2, 13), (3,3), (4,10), (5,11), (6,1), (7,2), (8,12),
(9,14), (10,15)

After scan and update:

(1,0), (2, 13), (3,13), (4,13), (5,13), (6,13), (7,13), (8,13),
(9,14), (10,15)



Date Tiered Compaction Cont'd

Undesirable scenario: file on the lower tier has long
tails

HBASE-15400, major and minor compactions with
splitting by window boundaries will help

All servers in the cluster will promote windows to
higher tier at the same time

using a compaction throttle is recommended
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Date Tiered Compaction Cont'd

This compaction policy is unsuitable for following
cases

future timestamp is used in writes

frequent deletes and updates

random gets without a time range

bulk load of heavily overlapping time-range data
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Perf Validation (days after turned on)
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Dynamic Content Processing

» Sieve — Yahoo's real-time content management
platform

* Real-time content processing pipelines
- Storage and notifications on the same platform

Apache Storm
— —
Link
Analysis

Content

Apache HBase

/
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Workload Characteristics

Small working set but not necessarily a FIFO queue
Short life-cycle delete message after processing it
High-churn workload message state can be updated

Frequent scans for consuming message
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Two Basic ldeas

In-Memory Compaction

Exploit redundancies in the workload to eliminate
duplicates in memory

Gain is proportional to the duplicate ratio
In-Memory Index Reduction

Reduce the index memory footprint, less overhead per
cell

Gain is proportional to the cell size

Prolong in-memory lifetime, before flushing to disk
»Reduce write amplification effect (overall 1/O)
»Reduce retrieval latencies
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In-Memory Compaction Design

- Random writes are absorbed in an active segment

- When active segment is full
— Becomes immutable segment (snapshot)
— A new mutable (active) segment serves writes
— Flushed to disk, truncate WAL

- On-Disk compaction reads a few files, merge-sorts them, writes

back new files
DefaultMemStore

--------- 2L T T T TTT T WAL

Hfiles

|
¥
|
|
|
|
1
|
1
|
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HBase Reads

- Random reads from active segment or snapshot or
Hfiles (Block Cache)

- When data piles-up on disk
— Hit ratio drops and retrieval latency up

- Compaction re-writes small files into fewer bigger
files

Snap-
shot
memory | HDFS
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In-Memory Compaction

Active segment flushed to pipeline
Pipeline segments compacted in memory
Flush to disk only when needed

Elc}ck cache

|
|
|
|
in-memory-flush :||||||||||WAL

|

Compaction :

pipeline l Hfiles
|
|
I flush
|
memory : HDFS
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In-Memory Flush and Compaction

—_—

Compaction
pipeline e

flush-to-disk

memory | HDFS
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In-Memory Compaction: tradeoffs

- Trade read cache (BlockCache) for write cache
(compaction pipeline)

LITTTTTTT ] wWAL

—_—

in-memory-flush
Blﬂﬂk l —
Compaction cache Hfiles
pipeline —

prepare-for-flush

[ snapshot flush-to-disk

memory | HDFS
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In-Memory Compaction

* Trade CPU cycles for less I/O

Block cache

Compaction
pipeline

memory
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In-Memory Working Set

YCSB: compares Compacting vs. Default MemStore
Small cluster: 3 HDFS nodes on a single rack, 1 RS

High-churn workload, small working set
—128,000 records, 1KB value field
—10 threads running 5 millions operations, various key distributions
—50% reads 50% updates, target 10000ps
—1% (long) scans 99% updates, target 5000ps
Measure average latency over time
—Latencies accumulated over intervals of 10 seconds
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Read Latency (Zipfian Distribution)
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Read Latency (Uniform Distribution)

Uniform (Read 50% - Write 50%) - Read Latency
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Scan Latency (Uniform Distribution)

Uniform (Scan 20K 99% - Write 1%) - Scan Latency
250000

——compacting

——default

200000

150000

Latency (us)

50000

m © Hortonworks Inc. 2014 Page 25




Read Latency(Zipfian Distribution) Handling
Tombstones

Zipfian (Read 40% - Write 40% - Delete 20%) - Read Latency
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Read Latency (Uniform Distribution)
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Scan Latency (Zipfian Distribution)

Zipfian (Scan 20k 1% - Write 66% - Delete 33%) - Scan Latency
250000 -
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Latency (us)
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Immutable Segment

*

Efficient iIndex representation
Concurrent
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No Dynamic Ordering for Immutable
Segment

New Immutable Segment

Cell Array
binary search
to the cell’s info
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Exploit the Immutabllity of a Segment after
Compaction

= New Design: Flat layout for immutable segments index
—Less overhead per cell
—Manage (allocate, store, release) data buffers off-heap

Pros
—Better utilization of memory and CPU
—Locality in access to index
—Reduce memory fragmentation
—Significantly reduce GC work
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New Design: Putting it all together

Are there redundancies
to compact?

Flatten the index —
less overhead per
cell

prepare-for-flush

Snap-
shot

L{W

Flatien the index &
compact-fewer cells
& less overhead per

ﬁ'l-

LI T T T T TPTT T WAL

Hfiles
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flush-to-disk

Hm © Hortonworks Inc. 2014

bry ' HDFS

Page 32



(sn) Aoumen

O |5

QO |3

o | &

<

> |8

M e

o & . s

S |2 § %

A e | 2 |5

|8 3 |
d%m

SEAERE

O |5 | & |8

C |5 | 3 |38

Q [~ || ]

Jd

@

—

o | & m

O

nd

0095
(EF R4
I+ES
0LeES
OE0S
O5GH
Desy
OESt
0a5t
DEFY
DoE+
OLLY
0¥l
DLBE
OBLE
0S3E
DESE
DGEE
D9eE
DELE
Q0oE
1A e
Ovid
OL8e
oaFe
OSEZ
DEEe
DEG:
(96 |
OERL
DOLL
0451
Ol
DLEL
(=1
OSh
A

064

0o

0ES

nov

O

Ol

"

Timeline (seconds)

Page 33

© Hortonworks Inc. 2014



5 3
8 £
£ 8
s 3
0 £ =
F | |
O |2
[y
O |z
N |3
— | £
ul
Il | w
1 | R
> 2
O | E
cC | £
Q |5
e
®
—
2 e & & 8§ &§ -
(sn) Aouae
¥

Ol¥t
DlEy
BLEY
BLL¥
ILOY
OLBE
(LHE
OhLE
GLoE
IL5E
IL¥E
OLEE
GLeE
GLLE
GLOE
DLEE
OLBE
DEHLE
(HR=T
LS
Bl¥e
DLEE
ohie
OLLe
(R
BLEL
aLeL
OLLL
H 3
(L
Ol
BLEL
QLEL
OLLL
GLok
]
)
)

oLe
oLS

DL
OLE

OLc

ok

oL

Timeline (seconds)

Page 34

© Hortonworks Inc. 2014



Q/A
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Thank you.




