
The Secret of PHP7’s Performance
@Laruence

SELF INTRODUCTION

‣ Author of Yaf, Yar, Yac, Yaconf, Taint Projects

‣ Maintainer of Opcache, Msgpack, PHP-Lua Projects

‣ PHP core developer since 2011

‣ Zend consultant since 2013

‣ PHP7 core developer

‣ Chief software architect at lianjia since 2015

PHP BRIEF INTRO

‣ Created in 1994 by Rasmus Lerdorf

‣ 20+ years programming language

‣ Most popular web service program language

‣ PHP7 is released at 3 Dec 2015

‣ Latest version is PHP7.0.8

PHP7

‣ Improved Performance: PHP 7 is up to twice as fast as PHP 5.6

‣ Significantly reduced memory usage

‣ Abstract syntax tree

‣ Consistent 64-bit support

‣ Improved exception hierarchy

‣ Many fatal errrors converted to exceptions

‣ The null coalescing operator (??)

‣ Return & Scalar type declarations

‣ Anonymous slasses

‣ ….

PHP7

‣ 100 % performance improved in various apps

‣ Which optimization is most responsible?

‣ …………………………………………………..

JUST-IN-TIME COMPILER

‣ Once upon a time

‣ There comes HHVM

‣ Performance really matters

‣ A secret project in Zend

‣ Based on opcache of PHP5.5

‣ Invisible performance change in wordpress

‣ Why?

https://github.com/zendtech/php-src/tree/zend-jit

WORDPRESS PROFILING (PHP5.5)

‣ Wordpress:

‣ Typical PHP real-life application

‣ Callgrind:

‣ 28% CPU time is spent on Zend VM

‣ 25% CPU time is spent on Memory

‣ Top one is _zend_mm_alloct_int

Callgrind result on wordpress home page

WORDPRESS PROFILING (PHP5.5)

‣ We have too many allocations

‣ Thoughts:

‣ _strndup

‣ HashTable

‣ MAKE_STD_ZVAL

__mm_alloc_init callers graph (part)

`MEMORY` IS THE KEY

‣ `Memory` is the bootle-neck(25%)
‣ High memory usage
‣ High cache misses

‣ High TLB misses

‣ High page faults

‣ Too many allocation
‣ More CPU time

‣ Increase iTLB miss

‣ Increase branch-miss

‣ High level memory indirection
‣ Increase cache misses

Cache hierarchy latency

INSPECT ZVAL

‣ Total 24 bytes

‣ Value uses 16 bytes

‣ Thoughts:
‣ Most types use 8 bytes

‣ String uses 12 bytes

‣ Only Object uses 16 bytes

‣ Only a little types are ref

630

BOOL/LONG/DOUBLE/ARRAY/RES

refcount type

0

1

2
is_ref

630

STRING

refcount type

0

1

2
is_ref

LEN

630

OBJECT

refcount type

0

1

2
is_ref

Scalar types

String Object

INSPECT ZVAL

‣ Not only 24 bytes
‣ GC info(for GC): Added 16 bytes

‣ Block info(for MM): Added 8 bytes

‣ Total 48 bytes

‣ Thoughts:
‣ Only array and object need gc info

‣ Block info?

‣ Stack allocating?

‣ New MM?

ZVAL size

630

zvalue_value

refcount type

0

1

2

is_ref

block_info

3

4

PROFILING WP

‣ String is the most used type

‣ Object is only used in 2%

‣ 40% types only used 8 bytes in zval.value

‣ Only 15% types are GC cared

‣ ~10% is reference type

‣ Thoughts:
‣ String needs to be optimized

‣ We don’t needs unified `zval`

‣ Reducing zval’s size should be possible

NULL 2798 4%

Bool 11894 17%

Double 6 ..

Long 4134 6%

Resource 25 ..

Array 8709 13%

Object 1582 2%

String 37564 56%

Types in one WP lifecycle

BRAND NEW ZVAL

‣ Total 16 bytes

‣ Copy instead of refcount for basic types

‣ Refcount is not against zval anymore

‣ External struct is used for complex types

‣ values can not be stored in size_t mem

‣ refcount

‣ gc_info

‣ value flags

ZVAL in PHP7

0 32 6348

IS_STRING/IS_ARRAY/IS_OBJECT/IS_RESROUCE/...

refcount gc_infotype flags

value

type u2flags

0 8 32 63

IS_LONG

IS_STRING

Address

Can be kept in 64bits?

Can be kept in 64bits?

ZEND STRING

‣ Most used type in real world

‣ PHP5
‣ C string

‣ int length

‣ Hash value needs to be calculated every time

‣ Interned string is distinguished by address

‣ PHP7
‣ Brand new type: zend_string

‣ Size length

‣ Hash value is kept after being calculated

‣ Interned string is distinguished by flags

‣ COW instead of copying

zend_string

0 32 6348

unsigned long hash_value

refcount gc_infotype flags

size_t string_len

char[1] val

INSPECT HASHTABLE

‣ Total 72 bytes

‣ typeof bucket->pData is void **

‣ Thoughts:

‣ In most cases, zval are stored

‣ Reduce memory usage

‣ Reduce memory indirection
‣ pListNext
‣ HashTable -> Bucket

‣ Bucket -> ZVAL ** (void **)

HashTable struct

HashTable
nTableMasknTableSize

0 8 32 63

pInternalPointer

nNumOfElem
nNextFreeElement

Bucket *

pListHead
pListTail

arBuckets
pDestructor

Bucket *
Bucket *

.......

Bucket
hashval

nKeyLength

pDataPtr
pData

pListNext
pListPrev

pNext
pLast
arKey

Bucket
hashval

nKeyLength

pDataPtr
pData(void **)

pListNext
pListPrev

pNext
pLast
arKey

zval

zval**

ZEND ARRAY

‣ Total 56 bytes

‣ Key is zend_string

‣ Less memory indirection

‣ Bucket.val

‣ Bucket.val.zval

‣ Buckets are allocated together

zend_array struct

zend_array
refcounted

0 8 32 63

u
arData

idx
idx

Bucket 0
nTableMask

nNumUsed nNumOfElem
nTableSize InternalPointer

pNextFreeElement
pDestructor

.......

hashval
key

zval

Bucket 1
hashval

key

zval

Bucket 2

Symbol Table
$azval **

0x7ffff7fd1848

S 0
4

0x7ffff7fd1848

5

L 0

ILLUSTRATION PHP5

$a = 5

ref = 1

$b = $a
$b

ref = 2

$m = “PHP5”

$m

ref = 1

$n = $m

$n

ref = 2
$l = &$n

$l

0x7ffff7fd18e0

S 1
4

0x7ffff7fd18e0

ref = 1 ref = 2

hash = 3245185675147665086

S

4

'P', 'H', 'P', '\0'

0x7ffff7fd18e0
zend_string

R

0x7ffff7fd18e0

S 1
4

zend_reference

Symbol Table
$a

7

L
zval

ILLUSTRATION PHP7

$a = 7
$b = $a

$b
7
L

$m = “PHP7”
$m
0x7ffff7fd18e0

S

ref=1

$n = $m

$n
0x7ffff7fd18e0

S

ref=2

$l = &$n

$l
0x7ffff7fd1000

R

ref=1ref=2

R

0x7ffff7fd1000

ILLUSTRATION PHP5

$arr = range(0, 5)
foreach($arr as $val) {
}

HashTable
78

6
5

Bucket *

pListHead
pListTail

arBuckets
pDestructor

Bucket *
Bucket *

.......

Bucket
0
0

pData

pListNext

arKey = NULL

Bucket
1
0

pData

pListNext

arKey = NULL

Bucket
2
0

pData

pListNext

arKey = NULL

zval **

zval *

0

zval **

zval *

1

refcount = 1 0H 0

7NaN

Bucket *arData

8 8

Zend Array

0
zval(0)

L

1
zval(1)

L

2
zval(2)

L

ILLUSTRATION PHP7

$arr = range(0, 7)
foreach($arr as $val) {
}

Symbol Table
$a $bzval **

Compiled vars
0($a) "a"($b)

1

L 0

zval **

zval

THERE COMES TROUBLES

function func() {
 $a = 1;
 $b = "a";
 $$b = 2; //build symbol table
 var_dump($a);
}

This is not a problem in PHP5

But this is a problem now

Symbol Table
$a

1

L

$b
"a"

S
zval

Compiled vars
0($a)

1

L

1($b)
"a"

S
zval

0xfffeee00

INDIRECT

This is why IS_INDRECT was born

‣ 2M(4M) Page Size
‣ Not swappable

‣ Reduce TLB misses
‣ 64 * 4k = 256K

‣ 8 * 2M = 16M

‣ size php binary(o2) text size ~= 10M

‣ opcache.huge_code_pages(iTLB)

‣ shared memory(dTLB)

‣ regular memory(dTLB)

‣ Hugepage is not always good:

‣ SIGBUS on OOM after fork

‣ Hugepage on NUMA

Huge Pages

Translation Lookaside Buffer

VAddress TLB

0x7fff0100 0xbee100

0x7fffe100 0xbee200

0x7fff0000 0xbee300

VAddress PAddress

L2 TLB

0x7fff0100 0xbee100

0x7fffe100 0xbee200

0x7fff0000 0xbee300

VAddress PAddress

RAM

Page Table

PAddress

MISS MISS

Limited size

>60ns1ns 4ns

Wordpresss homepage 100 runs PHP5.5 iTLB stat PHP7 (with huge_code_page) iTLB stat

‣ New memory manager

‣ Memory is allocated in pages

‣ Pages are fixed sizes in one chunk

‣ Chunk is 2M aligned

‣ Block info is unnecessary anymore:

‣ Chunk = Address & ~(2M - 1)

‣ Page = Address & (2M - 1)

‣ efree_size

‣ Similar size mem are probably allocated nearly

PHP7 MM

PHP7 memory manager

Chunk

Heap

prev

huge_list

main_chunk

free_slot

next

free_pages

free_map

pages

map

Chunk
prev

next

free_pages

free_map

pages

map

FRUN

LRUN
 > 3072

SRUN

8

16

24

32

40

...

512

....

3072

Huge
 >~2M

0 1 2 29

2M Aligned

‣ Basically

‣ Memory is reduced almost by half

‣ Cache misses is significant reduced

‣ TLB misses is significant reduced

‣ Memory indirection is significant reduced

`MEMORY` IS THE KEY

‣ Zend VM refactor

‣ Supper global registers

‣ Huge Pages

‣ File based opcache
‣ No refcount for scalar types

‣ Function calling convention improved

‣ zvals are always pre-allcocated or allocated in stack(no more MAKE_STD_ZVAL and ALLOC_ZVAL)

‣ Faster string comparing also

‣ New HashTable iteration AP

‣ Array duplication optimization

‣ PGO supported

‣ Reference-counting instead of copying

‣ call_user_function(_array) => ZEND_INIT_USER_CALL

‣ Is_int/string/array/* etc => ZEND_TYPE_CHECK

‣ strlen => ZEND_STRLEN

‣ defined => ZEND+DEFINED

‣ Faster sorting algo

‣ Immutable array

‣ Fast arguments parsing API

‣ Optimized strings concatenation.

‣ ………
‣ ……..

NOT ONLY, BUT ALSO (TL;DR)

PHP7 PROFILING

‣ 100% performance increased

‣ 60% IR reduced

‣ 40% memory usage reduced

‣ 20% branches reduced

‣ 15% iTLB misse reduced

‣ What a great life :)

PHP7 PERFORMANCE NEXT

‣ PHP 7.1

‣ DFA optimization

‣ Type inference

‣ Type specific opcode handlers

‣ Faster static vars binding

‣ Dozens small improvements

‣ 30% performance improvement in bench.php already

‣ Significant performance improvement in reallife application

‣ Alpha has been released in July 2016

Q&A

