
Scale out your database
without pain

Liu Qi

About me

Qi Liu (刘奇)

Co-founder & CEO of PingCAP

JD / Wandou Labs / PingCAP

Infrastructure software engineer / Open source hacker

Codis / TiDB / TiKV

Let’s get started

Thanks to statelessness, we can easily scale LA P(without M) by adding more machines

Hold on, how about “M” ? (MySQL)

What would you do when…

RDBMS is becoming the performance bottleneck of your backend service

The amount of data stored in RDBMS is overwhelming

What would you do when…

RDBMS is becoming the performance bottleneck of your backend service

The amount of data stored in RDBMS is overwhelming

Sharding your database or table manually, yeah

Or

Sharding by using proxy (vitess, MySQL proxy, kingshard, atlas…)

When things get more complicated…

You want to do some complex queries on a sharding cluster

e.g. simple JOIN or GROUP BY or Subquery

Oh, No...

You need a real distributed database, not sharding.

TiDB: when you need a distributed SQL database

Horizontal scalability (forget about sharding key)

Asynchronous schema changes(feel free to change your schema online)

Consistent distributed transactions (no sharding limits anymore)

Compatible with the MySQL protocol (You know what I mean)

MySQL Sharding VS TiDB
MySQL Sharding TiDB

ACID Transaction Support

Elastic Scaling

Complex Query

Failover Manual Auto

MySQL Compatibility Low High

Max Capacity (high performance) < 2TB 200 TB+

Architecture

TiKV TiKV TiKV TiKV

Raft Raft Raft

TiDB TiDB TiDB

...

... ...

Placement
Driver (PD)

Control flow:
Balance / Failover

Metadata / Timestamp request

Stateless SQL Layer

Distributed Storage Layer

gRPC
gRPC

gRPC

Storage stack 1/2

TiKV is the underlying storage layer

Physically, data is stored in RocksDB

We build a Raft layer on top of RocksDB

What is Raft?

Written in Rust!

why

TiKV

API (gRPC)

Transaction

MVCC

Raft (gRPC)

RocksDB

Raw KV API
(https://github.com/pingcap/ti
db/blob/master/cmd/benchraw
/main.go)

Transactional KV API
(https://github.com/pingcap/tidb/
blob/master/cmd/benchkv/main.
go)

RocksDB Instance

Region 1:[a-e]

Region 3:[k-o]

Region 5:[u-z]

...

Region 4:[p-t]

RocksDB Instance

Region 1:[a-e]

Region 2:[f-j]

Region 4:[p-t]

...

Region 3:[k-o]

RocksDB Instance

Region 2:[f-j]

Region 5:[u-z]

Region 3:[k-o]

...
RocksDB Instance

Region 1:[a-e]

Region 2:[f-j]

Region 5:[u-z]

...

Region 4:[p-t]
Raft group

Storage stack 2/2
Data is organized by Regions

Region: a set of continuous key-value pairs

RPC (gRPC)

Transaction

MVCC

Raft

RocksDB

···

…...

Region size

Spanner: ~1G

TiDB: 64M ~ 1G (configurable)

Depending on the network quality

Dynamic Multi-Raft

What’s Dynamic Multi-Raft?

Dynamic split / merge

Safe split / merge

Region 1:[a-e]

split Region 1.1:[a-c]

Region 1.2:[d-e]split

Safe Split: 1/4

TiKV1

Region 1:[a-e]

TiKV2

Region 1:[a-e]

TiKV3

Region 1:[a-e]

raft raft

Leader Follower Follower

Raft group

Safe Split: 2/4

TiKV2

Region 1:[a-e]

TiKV3

Region 1:[a-e]

raft raft

Leader

Follower Follower

TiKV1

Region 1.1:[a-c]

Region 1.2:[d-e]

Safe Split: 3/4

TiKV1

Region 1.1:[a-c]

Region 1.2:[d-e]

Leader
Follower Follower

Split log (replicated by Raft)

Split log

TiKV2

Region 1:[a-e]

TiKV3

Region 1:[a-e]

Safe Split: 4/4

TiKV1

Region 1.1:[a-c]

Leader

Region 1.2:[d-e]

TiKV2

Region 1.1:[a-c]

Follower

Region 1.2:[d-e]

TiKV3

Region 1.1:[a-c]

Follower

Region 1.2:[d-e]

raft

raft

raft

raft

Region 1

Region 3

Region 1
Region 2

Scale-out (initial state)

Region 1*

Region 2 Region 2
Region 3Region 3

Node A

Node B

Node C

Node D

Region 1

Region 3

Region 1^
Region 2

Region 1*

Region 2 Region 2

Region 3Region 3

Node A

Node B

Node E
1) Transfer leadership of region 1 from Node A to Node B

Node C

Node D

Scale-out (add new node)

Region 1

Region 3

Region 1*
Region 2

Region 2 Region 2

Region 3

Region 1

Region 3

Node A

Node B

2) Add Replica on Node E

Node C

Node D

Node E

Region 1

Scale-out (balancing)

Region 1

Region 3

Region 1*
Region 2

Region 2 Region 2

Region 3

Region 1

Region 3

Node A

Node B

3) Remove Replica from Node A

Node C

Node D

Node E

Scale-out (balancing)

Placement Driver

The concept comes from Spanner

Provide the God’s view of the entire cluster

Store the metadata

Clients have cache of placement information.

Maintain the replication constraint

3 replicas, by default

Data movement for balancing the workload

It’s a cluster too, of course.

Placement
Driver

Placement
Driver

Placement
Driver

Raft

Raft

Raft

ACID Transaction

The transaction API is in TiKV

Based on Google Percolator

‘Almost’ decentralized 2-phase commit

Timestamp Allocator (PD)

~8M timestamps allocations per second

Optimistic transaction model

Default isolation level: Repeatable Read

External consistency: Snapshot Isolation + Lock

Distributed SQL

Full-featured SQL layer

Predicate pushdown

Distributed join

Distributed cost-based optimizer (Distributed CBO)

TiDB SQL Layer overview

What happens behind a query

CREATE TABLE t (c1 INT, c2 TEXT, KEY idx_c1(c1));

SELECT COUNT(c1) FROM t WHERE c1 > 10 AND c2 = ‘foo’;

Query Plan

Partial Aggregate
COUNT(c1)

Filter
c2 = “ucloud”

Read Index
idx1: (10, +∞)

Physical Plan on TiKV (index scan)

Read Row Data
by RowID

RowID

Row

Row

Final Aggregate
SUM(COUNT(c1))

DistSQL Scan

Physical Plan on TiDB

COUNT(c1)

COUNT(c1)

TiKV
TiKV

TiKV

COUNT(c1)
COUNT(c1)

Supported Distributed Join Type

Hash Join

Sort merge Join

Index-lookup Join

No silver bullet (anti-patterns for TiDB SQL)

Join between large tables without index or any hints

Get distinct values from large tables without index

Sort without index

Result set is too large (forget LIMIT N?)

What makes TiDB slow?

Hot and small table accessing

TiDB can’t redistribute your workload

If you always append to 1 table, the hotspot will always exist in the last region of this
table.

TiDB isn’t a time series database

Auto-increment ID / Timestamp index

Best practices

Don’t use distributed database if you can handle your data with a single MySQL
instance

Best practices

Use ansible to maintain your cluster (for private deployment)

Don’t use network block devices, please use ssd

Careful about the Auto Increment ID (always append to a table)

Best practices

Read the documents first

Need help?

File issues

Google Group

Email: info@pingcap.com

Tools matter

Syncer

TiDB-Binlog

Mydumper/MyLoader(loader)

https://github.com/pingcap/tidb-tools

Syncer

Synchronize data from MySQL in real-time

Hook up as a MySQL replica

MySQL
(master)

Syncer

Save Point
(disk)

Rule Filter

MySQL

TiDB Cluster

TiDB Cluster

TiDB Cluster

SyncerSyncerbinlog

Fake slave

Syncer

or

TiDB-Binlog

TiDB Server

TiDB Server Merger

Pumper

Pumper

TiDB Server

Pumper

Protobuf

MySQL Binlog

MySQL

3rd party applicationsCistern

Subscribe the incremental data from TiDB

Output Protobuf formatted data or MySQL Binlog format(WIP)

Another TiDB-Cluster

Roadmap

TiSpark: Integrate TiKV with SparkSQL （2017.07）

Better optimizer (Statistic && CBO)

Json type and document store for TiDB （2017.09）

MySQL 5.7.12+ X-Plugin

Integrate with Kubernetes （2017.07）

Integrate with UCloud and more, yay~

Thank you
https://github.com/pingcap/tidb

https://github.com/pingcap/tikv

Any questions?

