
@crichardson

Using sagas to maintain data
consistency in a microservice

architecture
Chris Richardson

Founder of Eventuate.io
Founder of the original CloudFoundry.com
Author of POJOs in Action

@crichardson
chris@chrisrichardson.net
http://eventuate.io

@crichardson

Presentation goal

Distributed data management challenges
in a microservice architecture

Sagas as the transaction model

@crichardson

About Chris

@crichardson

About Chris

Consultant and trainer
focusing on modern

application architectures
including microservices

(http://www.chrisrichardson.net/)

@crichardson

About Chris

Founder of a startup that is creating
an open-source/SaaS platform

that simplifies the development of
transactional microservices

(http://eventuate.io)

@crichardson

For more information

http://learnmicroservices.io

@crichardson

Agenda

ACID is not an option

Overview of sagas

Coordinating sagas

The microservice architecture
structures

an application as a
set of loosely coupled

services

@crichardson

The microservice architecture
tackles complexity through

modularization

* might improve scalability too

@crichardson

Microservice architecture

Browser

Mobile
Device

Store
Front UI

API
Gateway

Customer
Service

Order
Service

…
Service

Customer
Database

Order
Database

…
Database

HTML

REST

REST

Database per service

@crichardson

Loose coupling =
encapsulated data

Order Service Customer Service

Order Database Customer Database

Order table Customer
table

orderTotal creditLimit

@crichardson

How to maintain data
consistency?!?!?

Invariant:
sum(open order.total) <= customer.creditLimit

@crichardson

Cannot use ACID transactions

BEGIN TRANSACTION
…
SELECT ORDER_TOTAL
 FROM ORDERS WHERE CUSTOMER_ID = ?
…
SELECT CREDIT_LIMIT
FROM CUSTOMERS WHERE CUSTOMER_ID = ?
…
INSERT INTO ORDERS …
…
COMMIT TRANSACTION

Private to the
Order Service

Private to the
Customer Service

Distributed transactions

@crichardson

2PC is not an option
Guarantees consistency

BUT

2PC coordinator is a single point of failure

Chatty: at least O(4n) messages, with retries O(n^2)

Reduced throughput due to locks

Not supported by many NoSQL databases (or message brokers)

CAP theorem ⇒ 2PC impacts availability

….

@crichardson

Agenda

ACID is not an option

Overview of sagas

Coordinating sagas

@crichardson

From a 1987 paper

@crichardson

Saga

Use Sagas instead of 2PC
Distributed transaction

Service A Service B

Service A

Local
transaction

Service B

Local
transaction

Service C

Local
transaction

X Service C

@crichardson

Order Service

Create Order Saga

Local transaction

Order
state=PENDING

createOrder()

Customer Service

Local transaction

Customer

reserveCredit()

Order Service

Local transaction

Order
state=APPROVED

approve
order()

createOrder()

@crichardson

If only it were this easy…

@crichardson

Rollback using compensating
transactions

ACID transactions can simply rollback

BUT
Developer must write application logic to “rollback” eventually
consistent transactions

Careful design required!

@crichardson

Saga: Every Ti has a Ci

T1 T2 …

C1 C2

Compensating transactions

T1 ⇒ T2 ⇒ C1

FAILS

@crichardson

Order Service

Create Order Saga - rollback

Local transaction

Order

createOrder()

Customer Service

Local transaction

Customer

reserveCredit()

Order Service
Local transaction

Order

reject
order()

createOrder()

FAIL

Insufficient credit

@crichardson

Sagas complicate API design
Request initiates the saga. When to send back the response?

Option #1: Send response when saga completes:

+ Response specifies the outcome

- Reduced availability

Option #2: Send response immediately after creating the saga
(recommended):

+ Improved availability

- Response does not specify the outcome. Client must poll or be
notified

@crichardson

Revised Create Order API

createOrder()

returns id of newly created order

NOT fully validated

getOrder(id)

Called periodically by client to get outcome of validation

@crichardson

Minimal impact on UI

UI hides asynchronous API from the user

Saga will usually appear instantaneous (<= 100ms)

If it takes longer ⇒ UI displays “processing” popup

Server can push notification to UI

@crichardson

Sagas complicate the
business logic

Changes are committed by each step of the saga

Other transactions see “inconsistent” data, e.g. Order.state =
PENDING ⇒ more complex logic

Interaction between sagas and other operations

e.g. what does it mean to cancel a PENDING Order?

“Interrupt” the Create Order saga

Wait for the Create Order saga to complete?

@crichardson

Agenda

ACID is not an option

Overview of sagas

Coordinating sagas

@crichardson

How to sequence the saga
transactions?

After the completion of transaction Ti “something” must
decide what step to execute next

Success: which T(i+1) - branching

Failure: C(i - 1)

@crichardson

Order Service

Orchestration-based saga coordination

Local transaction

Order
state=PENDING

createOrder()

Customer Service

Local transaction

Customer

reserveCredit()

Order Service

Local transaction

Order
state=APPROVED

approve
order()

createOrder()
CreateOrderSaga

@crichardson

Complex coordination logic is
centralized 😀

@crichardson

Services expose APIs that are
invoked by saga 😄

@crichardson

Order Service

CreateOrderSaga orchestrator

Customer Service

Create Order

Customer

creditLimit
creditReservations
...

Order
state
total…

reserveCredit()
CreateOrder

Saga

OrderService

create()

create()
approve()

creditReserved()

@crichardson

Saga orchestrators are state
machines

RESERVING
CREDIT

APPROVED

REJECTED

/ customerService.
reserveCredit()

credit reserved
/ order.approve()

credit limit exceed
/ order.reject()

event [guard] / action

Initial action

reply and action

@crichardson

Create Order Saga code

Enum Persistent data

Stateless singleton: Behavior

Eventuate Saga framework

State

@crichardson

Create Order Saga
State machine definition

@crichardson

Initializing the saga

Invoke saga participant

Create order

@crichardson

Handling a reply

Update Order

@crichardson

Customer Service - command
handling

Reserve credit

@crichardson

Saga
Participant

About Saga orchestrator ⇔
participant communication

Saga
Orchestrator

Saga
Participant

command

reply

Saga must complete even if there are transient failures

@crichardson

Use asynchronous
messaging

@crichardson

Create Order Saga messaging
Order Service

Message Broker Customer Service

Begin TXN
 Read data
 Send reply
Commit TXN

Credit Reserved
Credit Limit Exceeded

Create Order
Saga

Orchestrator

reserve credit

Customer Service
Request Channel

Customer Service
Reply Channel

Order

create()
approve()
reject()

Commands

Replies

@crichardson

Messaging must be
transactional

Service

Database Message Broker

update publish

How to
make atomic
without 2PC?

@crichardson

Option #1: Use database
table as a message queue

ACID
transaction

See BASE: An Acid Alternative, http://bit.ly/ebaybase

DELETE

Customer
Service

ORDER_ID CUSTOMER_ID TOTAL

99

CUSTOMER_CREDIT_RESERVATIONS table

101 1234

ID TYPE DATA DESTINATION

MESSAGE table

84784 OrderCreated {…} …

INSERT INSERT

Message
Publisher

QUERY

Message
Broker

Publish

Local transaction ?

@crichardson

Publishing messages

Poll the MESSAGE table

OR

Tail the database transaction log

@crichardson

Option #2: Event sourcing:
event-centric persistence

Service

Event Store

save events
and

publish

Event table

Entity type Event
id

Entity
id

Event
data

Order 902101 …OrderApproved

Order 903101 …OrderShipped

Event
type

Order 901101 …OrderCreated

Every state change ⇒ event

@crichardson

Summary

Microservices tackle complexity and accelerate development

Database per service is essential for loose coupling

Use sagas to maintain data consistency across services

Use transactional messaging to make sagas reliable

@crichardson

@crichardson chris@chrisrichardson.net

http://learnmicroservices.io

Questions?

