Alrbnb*SUE‘ AWM

FEREBEHERANKRE

B AKRKEEDOAMEE | 2017.9.10-11

(SEEENERERES e ::

Geekbang>. [nfoQ,

+ BRI
o FRRLN

» PR AN

+ FRRRSZN
+ FRRESZN
+ FRRESAN

Data Platform at Airbnb
Cluster Evolution
Agenda

Incremental Data Replication - ReAIr

Unified Streaming and Batch Processing - AirStream

Data Platform at Airbnb
Cluster Evolution
Agenda

Incremental Data Replication - ReAIr

Unified Streaming and Batch Processing - AirStream

Scale of Data Infrastructure at Airbnb

>13B

#Events Collected

>35PB

Warehouse Size

1400+

Machines

Hadoop + Presto +
Spark

5X

YoY Data Growth

Data Platform

Airflow Scheduling

Event Gold Cluster Silver Cluster Spark Cluster
Logs
AlrStream
Do [
Dumps HDFS HDFS
i |
vt - AirPal
Presto Cluster - | SuperSet

-> Tableau

Data Platform

Airflow Scheduling

Event Gold Cluster Silver Cluster Spark Cluster
Logs
AlrStream
Do [
Dumps HDFS HDFS
i |
vt - AirPal
Presto Cluster - | SuperSet

-> Tableau

Data Platform at Airbnb
Cluster Evolution
Agenda

Incremental Data Replication - ReAIr

Unified Streaming and Batch Processing - AirStream

Original Cluster

Setup Challenges
- Single HDFS, MR and Hive installation - Limited isolation between production / adhoc
- c3.8xlarge (32 cores / 60G mem / 640GB disk) - Adhoc
+ 3TB of EBS volume .
- Difficult to meet SLA's

800 nodes
- Tested DN on different AZ’s

- Harder for capacity plan

Disaster recovery

- All data managed by Hive .
Difficult roll outs

Two Clusters

- Two Independent HDFS, MR, Hive metastores

d2.8xlarge w/ 48TB local

Gold Cluster Silver Cluster

~250 Instances In final setup

Replication of common / critical data - Silver Is super Replication

of Gold q ive

For disaster recovery, separate AZ's HDES varn BMHDES

Multi-Cluster Trade-Offs

Advantages Disadvantages
Failure isolation with user jobs - Data synchronization
Easy capacity planning - User confusion
Guarantee SLA's - Operational overhead

- Able to test new versions

Disaster Recovery

Multi-Cluster Trade-Offs

Advantages Disadvantages
Failure isolation with user jobs - Data synchronization
Easy capacity planning - User confusion
Guarantee SLA's - Operational overhead

- Able to test new versions

Disaster Recovery

Data Platform at Airbnb
Cluster Evolution
Agenda

Incremental Data Replication - ReAir

Unified Streaming and Batch Processing - AirStream

Warehouse Replication Approaches

Batch Incremental
- Scan HDFS, metastore - Record changes In source
- Copy relevant entries - Copy/re-run operations on destination
- Simple, no state - More complex, more state

High latency - Low latency (seconds)

- Record Changes on Source

Incremental B
_ _ - Convert Changes to Replication Primitives
RepllCathn - Run Primitives on the Destination

- Hive provides hooks API to fire at specific points

- Pre-execute

Record Changes - Post-execute
- Failure
On Source

- Use post-execute to log objects that are created into an
audit log

- In critical path for queries

Example Audit
Log Entry

- 3 types of objects - DB, table, partition
Convert Changes - 3types of operations - Copy, rename, drop

to Primitive
Operations

- 9 different primitive operations

- ldempotent

CREATE TABLE srcpart (key STRING) PARTITIONED BY
(ds STRING)

- Copy Table

Primitive INSERT OVERWRITE TABLE srcpart PARTITION(ds=‘1")

SELECT key FROM src
Example X
- Copy Partition

ALTER TABLE srcpart SET FILEFORMAT TEXTFILE
- Copy Table

ALTER TABLE srcpart RENAME to srcpart_old
- Rename table

Copy Table Flow

Ml dest exists & copy to
and the temp
same? location

source
ex|sts?

verify the add
copy metadata

Data Platform at Airbnb
Cluster Evolution
Agenda

Incremental Data Replication - ReAIr

Unified Streaming and Batch Processing - AirStream

Batch Infrastructure

Airflow Scheduling

Event Gold Cluster Silver Cluster Spark Cluster
Logs

MySOL Sgoop IVE

Dumps HDFS HDFS

—> AilrPal

i i

v

SuperSet

—> Tableau

AlrStream

Process

Streaming at Airbnb - AirStream

Sources Airflow Scheduling
Cluster

Spark Streaming

Dynamo
DB

Elastic
Search

| ambda Architecture

| ambda Architecture

AlrStream

Streaming Batch

Spark Streaming Spark SQL

State Storage

Sources

Streaming

source: |

{

name.

type: kafka, type: hive,
config: { sql: {
select * from db.table where

topic: "example_topic", ds=2017-06-05'"

Computation

Streaming/Batch

process: [{

name =
type = sql,
sqgl ="""
SELECT listing _Id, checkin_date, context.source as source
FROM
WHERE user 1d IS NOT NULL """

j]

Streaminc

sink: | sink: |
{ {
name = sink_example name = sink_example
input = Input =
type = hbase update type = hbase update
hbase table name =test table hbase table name =test table

Computation Flow

Streaming Batch

sSource Source

Process A Process B Process A Process B

Process Al Process Al

Sink A2 Sink B2 Sink A2 Sink B2

Unified API through AirStream

- Declarative job configuration
- Streaming source vs static source

- Computation operator or sink can be shared by streaming
and batch job.

- Computation flow Is shared by streaming and batch

- Single driver executes In both streaming and batch mode
job

Shared State Storage

Shared Global State Store

AlrStream

Spark Streaming Spark Batch

HBase Tables

Why HBase

- Well integrated with Hadoop eco system

- Efficient API for streaming writes and bulk uploads

- Rich APl for sequential scan and point-lookups

- Merged view based on version

Unified Write API

HBase

Re-partition
Puts

<Region 1, [RowKey,
Value]> q

<Region 2, [RowKey,
Value]>

DataFrame *

HFile
BulkLoad

—

<Region N, [RowKey,
Value]>

Rich Read AP

Spark Streaming/Batch Jobs

Multi-Gets

HBase Tables

Merged Views

Row Key

Streaming Writes q V200 TS200
Streaming Writes q V150 TS150

Time

Merged Views

Row Key

Streaming Writes q V200 TS200

Streaming Writes q V150 TS150

Batch Bulk Upload q V100 TS100
Streaming Writes q TS01

Time

- Unify streaming and batch process

Our Foundations

- Shared global state store

MySQL DB Snapshot
Using Binlog Replay

Move Elephant

Database Snapshot

- Large amount of data: Multiple large mysgl DBs
- Realtime-ness: minutes delay/ hours delay
- Transaction : Need to keep transaction across different tables

- Schema change: Table schema evolves

Binlog Replay on Spark

o o spinal tap

=P Skafka

'

{Spmﬁ ﬂ\

Streaming
J

15

) T o _\I
{Spor‘ﬁz

Streaming
J

i AirStream Job |

| ambda Architecture

Binlog(realtime/history)

- Streaming and Batch shares Logic:
Binlog file reader, DDL processor,
transaction processor, DML

Log Parser Processor.

'I\/Iy_sql I‘n Stah\c'eh

- Merged by binlog position:
<filenum, offset>

- ldempotent: Log can be replayed
multiple times.

- Schema changes: Full schema
Change change history.

Processor

Transaction
Processor

Streaming Ingestion &
Realtime Interactive

Query

Realtime Ingestion and Interactive Query

. I
AlrStream Query
Engine
Spark SQL
Kafka HBase Data
Spark
Streaming Hive SQL Portal

Presto SQL

Interactive Query Iin SglLab

superset &8 Security v /& Manage v £ Sources v [l Slices @ Dashboards A SQLLab v O & - v
‘ Untitled Query 2 v ‘ [+

Select a database (1) v 1| SELECT ...|

Select a schema (0) v

Add a table (0) v

Results Query History

Run a query to display results here

Realtime OLAP with
Druild

Realtime Ingestion for Druid

AlrStream

Kafka Druid
- -

Spark

Druid Beam

Streaming

Superset Powered by Druid

Realtime Indexing

Realtime Indexing

Hive

Table A
Table B

Table C

Kafka

-..-..

AlrStream

Elastic
Search

es version

mutation 1d

Backup Slides

TIpsS

Moving Window
Computation

Long Window Computation

" What if window is weeks,
months, or even years? f

Distinct In a Large Window

| don’t want
 approximation. What
should | do? |

Distinct Count

Row Key

_ _ Listing 1 Visitor 01 TS100
Prefix Scan with
TimeRange

TimeRange

Moving Average

L Total Review
Window 1 _

L Total Review
isting 1 1550

Count Difference/
Time Elapsed

Time Elapsed

Window 2

o Total Review
Listing 1 cnt: 01 TSO01

Schema Enforcement
Streaming Events

Thrift -> DataFrame

—)

» Thrift * Field *
Object Value

https://github.com/airbnb/airbnb-spark-thrift

Thrift
Class

Thrift
Event

DataFrame

https://github.com/airbnb/airbnb-spark-thrift

Unify Batch and
Streaming Computation

Global State Store Using
RBase

- Serial execution

- Easy to reason about operations

Run Primitives Very slow
on Destination . Parallel execution

- Fast and scalable

- Ordering Is Important: e.g. create table before copying a
partition

- DAG of primitive operations

el ANESNTSHE

HELP TO BUILD ABETTER SOCIETY WITH

Geelcban

L E=F i E R

qgo.

InfoQ EGO StuQ

TEFSiImEE RN RAY A ER EimiAANRFIELRFE SCEEIKENRY T BHBEFS

LEFYal
i

