China · Shenzhen

## Dynamic Multi-Raft

Dongxu Huang PingCAP









## 智能时代的新运维







**斯达克学院(StuQ),**极客邦旗下实践驱动的IT教育平台。通过线下和线上多种 形式的综合学习解决方案 ,帮助IT从业者和研发团队提升技能水平。



## SPEAKER INTRODUCE

## 黄东旭 CTO & Cofounder, PingCAP

- MSRA / Netease / WandouLabs / PingCAP
- Hacker / Infrastructure software engineer
- Distributed system / Database / PL / ...
- Codis / TiDB / TiKV
- Golang / Rust / Python

## Consensus

is the only problem in distributed system...





#### Modern HA

• Master-slave is not an option, why?





## MySQL MHA + Semi-Sync?





| 12             |                                                         | 88           |                           |                 |                 |          |       |  |  |         |           |                   |  | Search           |
|----------------|---------------------------------------------------------|--------------|---------------------------|-----------------|-----------------|----------|-------|--|--|---------|-----------|-------------------|--|------------------|
| MySQL.         |                                                         |              |                           |                 |                 |          |       |  |  |         |           |                   |  | Login / Register |
| Developer Zone | Bugs Home                                               | Report a bug | Statistics                | Advanced search | Saved searches  | Tags     |       |  |  |         |           |                   |  |                  |
|                | Bug #80395 semi-sync: incorrect crash recovery handling |              |                           |                 |                 |          |       |  |  |         |           |                   |  |                  |
| Submitted:     |                                                         |              | 16 Feb 2016 12:54         |                 |                 |          |       |  |  | M       | lodified: | 16 Feb 2016 18:17 |  |                  |
|                |                                                         | Reporter:    | Matt Lord                 |                 |                 |          |       |  |  | Email U | Jpdates:  | Subscribe         |  |                  |
|                |                                                         | Status:      | Need Doc Info             |                 |                 |          |       |  |  | Impac   | t on me:  | None Affects Me   |  |                  |
|                |                                                         | Category:    | MySQL Server: Replication |                 |                 |          |       |  |  | 5       | Severity: | S2 (Serious)      |  |                  |
|                |                                                         | Version:     | 5.7.11                    |                 |                 |          |       |  |  |         | OS:       | Any               |  |                  |
|                | As                                                      | signed to:   | David Moss                |                 |                 |          |       |  |  |         |           |                   |  |                  |
| View Add       | Comment                                                 | Files Dev    | eloper Edi                | t Submission V  | ew Progress Log | Contribu | tions |  |  |         |           |                   |  | <br>             |

#### [16 Feb 2016 12:54] Matt Lord

#### Description:

When mysqld is killed while an open semi-sync replication transaction is waiting for the master timeout, that prepared \*but uncommitted\* transaction is NOT property rolled back when the master performs its subsequent automated crash recovery.

This was verified on OL 7.2 x86\_64, using MySQL 5.7.11-community.

How to repeat:





(3) Master crash again...then new master is elected







### TiDB Project (Requirement)

- Strong consistency
- Scalability
- High availability





#### **TiDB Project Overview**





#### **TiDB Project Overview**





#### **Replicated State Machines**

- All servers execute same commands in same order
- System makes progress as long as any majority of servers up
- Agreement on shared state (single system image)
- Recovers from server failures autonomously
  - Minority of servers fail: no problem
  - Majority fail: lose availability, retain strong consistency
- IMHO, there are only two RSM implementations:
  - Multi-Paxos / Raft



#### The problem in Paxos (Multi Paxos)

"The dirty little secret of the NSDI community is that at most five people really, truly understand every part of Paxos;-)."

-NSDI reviewer



#### Raft saves the day

#### • Leader election

- Select one of the servers to act as cluster leader
- Detect crashes, choose new leader

#### Log replication

- Leader takes commands from clients, appends to its log
- Leader replicates its log to other servers (overwriting inconsistencies)

#### • Safety

• Only a server with an up-to-date log can become leader



#### Use Raft in database

- Single RSM is **NOT** gonna work.
- You need 2PC to retain strong consistency across different RSMs.





### Raft in database

- How to shard?
- How to split / merge dynamically?
- How to balance the workload?
- How to improve the throughput?



### Sharding Raft in TiKV

- Split key space into Regions (normally in byte-order) logically
- Each region is a raft group
  - Default size: 96 ~ 128 MB
  - Why?

#### Key space (-inf, +inf)





#### Meta data storage

- We stores region meta in an in-memory B-Tree (in PD)
  - Sorted by the start key of region
  - We can find the right region which contains specific key in O(log N)
- PD is not '*the source of truth'*, data server is. Why?
  - Split is always happening
  - The metadata stored in PD may be out-of-date
  - Retry is important



#### Sharding Raft in TiKV





Sharding Raft in TiKV





## Dynamic split / merge



### Simple...Huh?





#### An abnormal situation...





#### An abnormal situation...

(3) After N rounds of split or membership changes...





```
An abnormal situation...
```





#### Another abnormal situation





#### **Introduce Region Epoch**

- Epoch(Region X) := {ConfVer, SplitVer}
- Every configuration change in Region X will increase the ConfVer
- Every split occurs in Region X will increase the SplitVer
- Let's say Epoch(R1) >= Epoch(R2), if and only if:
  - ConfVer(R1) >= ConfVer(R2) and SplitVer(R1) >= SplitVer(R2)
- Larger epoch always win



#### What about merge?

- Make sure all replica for these two regions are in same nodes
- And no more rebalance for these two regions





## Storage

- RSM storage
  - All regions in the same physical node share one RocksDB instance

#### • Log storage

- Journal-like storage
- Share with region storage



#### Leadership transfer

• For fast rebalance, since Raft is a randomized algorithm, there is a certain probability that one node has too many leaders.





#### Leadership transfer





#### Pre-vote algorithm

Avoid "term inflation" Vote failed, Term++ 11 R1 (Term 5) R1 (Term 5) R1 (Term 500) 11 **S2 S1 S**3 1 once the network recovery... 11 R1 (Term 5) R1 (Term 5) R1 (Term 500) ירו **S1 S2 S**3 **Request votes** 



#### Pre-vote algorithm



S3 sends Pre-vote request to S1 and S2 to make sure S3's log is up-to-date, when S3 receives responses from a majority of the cluster, S3 will increase its term and start a normal election





#### How to test

- Testing in distributed system is really hard
- Test-Driven Development
- Test cases from community
  - Lots of tests in MySQL drivers/connectors
  - Lots of ORMs
  - Lots of applications (Record---replay)
- Fault injection
  - Hardware: disk error, network card, cpu, clock
  - Software: file system, network and protocol
- Simulate everything: Network
- Distribute testing
  - Jepsen
  - Namazu



#### Benchmark

- 46 Physical nodes
- 460 TiKV instances (1 tikv instance for 1 HDD)
- TiKV Raw API Put (Raft)

Put(key, value) key size: 21 bytes value size: random (1~100 bytes)



#### Benchmark





#### Benchmark







2017 ArchSummit 深圳 TiDB 讨论

## THANKS!







#### 让创新技术推动社会进步

HELP TO BUILD A BETTER SOCIETY WITH INNOVATIVE TECHNOLOGIES

# Geekbang)。 极客邦科技

**InfoQ** 专注中高端技术人员的技术媒体



**EGO** EXTRA GEEKS' ORGANIZATION NETWORKS 高端技术人员学习型社交平台



StuQ 斯达克学院

实践驱动的 IT 教育平台



地址:北京市朝阳区洛娃大厦C座8层1801室 网址:www.geekbang.org