
Dynamic Multi-Raft

Dongxu Huang
PingCAP

黄东旭 CTO & Cofounder, PingCAP

● MSRA / Netease / WandouLabs / PingCAP

● Hacker / Infrastructure software engineer

● Distributed system / Database / PL / …

● Codis / TiDB / TiKV

● Golang / Rust / Python

Consensus
is the only problem in distributed system...

Modern HA

● Master-slave is not an option, why?

master

slave slave slave

Client

MySQL MHA + Semi-Sync?

master

Slave Slave

(1) Insert A, but master crash when
doing semi-sync

master

Slave Slave

Restart

(2) Read A, OK; But degrade to
async-replication

master

New master Slave

(3) Master crash again...then new master is elected

Read A, fail, oops...

TiDB Project (Requirement)

● Strong consistency
● Scalability
● High availability

TiKV TiKV TiKV TiKV

Raft Raft Raft

TiDB TiDB TiDB

...

... ...

Placement
Driver (PD)

Control flow:
Balance / Failover

Metadata / Timestamp request

Stateless SQL Layer

Distributed Storage Layer

gRPC

gRPC

gRPC

TiDB Project Overview

Today we are focusing on this part

TiKV TiKV TiKV TiKV

Raft Raft Raft

TiDB TiDB TiDB

...

... ...

Placement
Driver (PD)

Control flow:
Balance / Failover

Metadata / Timestamp request

Stateless SQL Layer

Distributed Storage Layer

gRPC

gRPC

gRPC

TiDB Project Overview

Replicated State Machines

● All servers execute same commands in same order
● System makes progress as long as any majority of servers up
● Agreement on shared state (single system image)
● Recovers from server failures autonomously

○ Minority of servers fail: no problem
○ Majority fail: lose availability, retain strong consistency

● IMHO, there are only two RSM implementations:
○ Multi-Paxos / Raft

The problem in Paxos (Multi Paxos)

“The dirty little secret of the NSDI community is

that at most five people really, truly understand

every part of Paxos;-).”

—NSDI reviewer

Raft saves the day

● Leader election
○ Select one of the servers to act as cluster leader

○ Detect crashes, choose new leader

● Log replication
○ Leader takes commands from clients, appends to its log

○ Leader replicates its log to other servers (overwriting inconsistencies)

● Safety
○ Only a server with an up-to-date log can become leader

Use Raft in database

● Single RSM is NOT gonna work.
● You need 2PC to retain strong consistency across different

RSMs.

Raft in database

● How to shard?
● How to split / merge dynamically?
● How to balance the workload?
● How to improve the throughput?

Sharding Raft in TiKV

R1 R2 R3 R4 R5

Key space (-inf, +inf)

(-inf, 100] (100, 200] (200, 300] (300, 400] (400,+inf)

● Split key space into Regions (normally in byte-order)
logically

● Each region is a raft group
○ Default size: 96 ~ 128 MB
○ Why?

Meta data storage

● We stores region meta in an in-memory B-Tree (in PD)
○ Sorted by the start key of region
○ We can find the right region which contains specific key in O(log N)

● PD is not ‘the source of truth’, data server is. Why?
○ Split is always happening
○ The metadata stored in PD may be out-of-date
○ Retry is important

S4S3S2S1

Sharding Raft in TiKV

R1

R1R2

R2 R2

R3

R3 R1

R3

Client / Router

Sharding Raft in TiKV

R1

R1'

R2

R1''

R3

R2'

R4

Dynamic split / merge

R1 (Leader) R1 (Follower) R1 (Follower)

Split Log (replicate by Raft)

Split Log

Simple...Huh?

R1 (Leader) R1 (Follower) R1 (Follower)

R1 (Leader) R1 (Follower) R1 (Follower)

R2 (Leader) R2 (Follower)

An abnormal situation...

(1)

(2)

S1 S2 S3

S1 S2 S3

S6 S4 S3S5

R1 (Leader) R1 (Follower) R1 (Follower)

R2 (Leader) R2 (Follower)

An abnormal situation...

R1 (Follower)

R2 (Follower)

S1 S2

Rx (Leader) Rx (Follower)

Ry (Leader) Ry (Follower)

(3) After N rounds of split or membership changes...

...

S3 S4 S3S5

R1 (Leader) R1 (Follower) R1 (Follower)

R2 (Leader) R2 (Follower)

An abnormal situation...

(4) R1 (Follower)

R2 (Follower)

S1 S2

Rx (Leader) Rx (Follower)

Ry (Leader) Ry (Follower)

Request votes for R1

...

S3

Another abnormal situation

R1 (Leader) R1 (Follower) R1 (When lease is not outdated)

R2 (Leader) R2 (Follower)

S1 S2

PD

R1 is [A, C] R1 is [A, D]

???

Introduce Region Epoch

● Epoch(Region X) := {ConfVer, SplitVer}
● Every configuration change in Region X will increase the

ConfVer
● Every split occurs in Region X will increase the SplitVer
● Let’s say Epoch(R1) >= Epoch(R2), if and only if:

○ ConfVer(R1) >= ConfVer(R2) and SplitVer(R1) >= SplitVer(R2)
● Larger epoch always win

What about merge?

S4S3S2S1

R1 R1

R2 R2 R2

R1R1

● Make sure all replica for these two regions are in same nodes
● And no more rebalance for these two regions

Storage

● RSM storage
○ All regions in the same physical node share one RocksDB instance

● Log storage
○ Journal-like storage
○ Share with region storage

Leadership transfer

● For fast rebalance, since Raft is a randomized algorithm, there
is a certain probability that one node has too many leaders.

S1

R1 (L)

R2 (L)

R3 (L)

S2

R1 (F)

R2 (F)

R3 (F)

S3

R1 (F)

R2 (F)

R3 (F)

Workload

Leadership transfer

S1

R1 (F)

R2 (L)

R3 (F)

S2

R1 (L)

R2 (F)

R3 (F)

S3

R1 (F)

R2 (F)

R3 (L)

Workload WorkloadWorkload

S3S1 S2

Pre-vote algorithm

● Avoid “term inflation”

R1 (Term 5) R1 (Term 5) R1 (Term 500)

S3S1 S2

R1 (Term 5) R1 (Term 5) R1 (Term 500)

Request votes

Vote failed, Term++

once the network recovery...

Pre-vote algorithm

S3S1 S2

R1 (Term 5) R1 (Term 5) R1 (Term 5)

S3 sends Pre-vote request to S1 and S2 to make sure
S3’s log is up-to-date, when S3 receives responses from a
majority of the cluster, S3 will increase its term and start a
normal election

Pre-Vote request

How to test

● Testing in distributed system is really hard
● Test-Driven Development
● Test cases from community

○ Lots of tests in MySQL drivers/connectors
○ Lots of ORMs
○ Lots of applications (Record---replay)

● Fault injection
○ Hardware: disk error, network card, cpu, clock
○ Software: file system, network and protocol

● Simulate everything：Network
● Distribute testing

○ Jepsen
○ Namazu

Benchmark

● 46 Physical nodes
● 460 TiKV instances (1 tikv instance for 1 HDD)
● TiKV Raw API Put (Raft)

Put(key, value)
key size: 21 bytes
value size: random (1~100 bytes)

Benchmark

Benchmark

