
Message passing
concurrency
made easy

Joe Armstrong

Plan
• Tell you why pure message passing is great

• Tell you how we implemented systems with pure
message passing

• Tell you how you can do this

• Tell you some other good things to do

• You leave here and write better software

Not ne
ces

sar
ily

in t
his

order

How can we
understand complex
software?

The BIG picture

eyes

hands feet

arms

legs

Name the channels

eyes

hands feet

arms

legs

Add messages

cat
dog
food

wave
pinch
shake

walk
run

bend
stretch
up
down

lift
push
stretch

Three parallel machines
communicating with
messages

Add the logic

Basic Properties

• Composable (build big things from small things)
• Parts must run in parallel
• Failure must be contained
• Messages must be well-defined
• Protocols must be well-defined
• Allow reasoning about behaviour to take place at different

levels
• Observable
• Made from small validated parts This is how we make

hardware not
software

To program
systems of communicating
objects we need to make
it easy to write parallel

programs

• World is parallel

• We want ONE way to program

• We want to reduce complexity

• but ….

Why do we want to write parallel programs?

It’s actually difficult
to write parallel
programs so …

Make it easy
to write
parallel

concurrent
programs

Automate
the parellelization

of concurrent
programs

Programmer
decides

the
process model

“Process model” =
“units of concurrency”

Observe the world
and the communication

channels

How many
processes?

How many
channels?

What are the
messages?

“Hello Robert”

robert ! “Hello Robert”
receive
 Msg ->
 mike ! “Hello Mike”
end

receive
 Msg ->
 joe ! “Hello Joe”
end,

“Hello Joe”

“Hello Mike”

Code is based
on OBSERVATION

What are the
messages?

joe ! {self(), “…..”}

mike ! {self(), “…..”}

robert ! {self(), “…”}

How do we
receive the
messages?

receive 
 {Joe, Msg} -> 
 … 
end

One parallel
operation in real

world
=

One process
Carl Hewett calls this
“physics modelling” (as
opposed to
computation based on
mathematical logic)

One parallel
operation in real

world
=

One process
Carl Hewett calls this
“physics modelling” (as
opposed to
computation based on
mathematical logic)

Describe the
problem as a

set of
concurrent
processes

Spread
processes
over cores

Fast
enough

Happy

Choose

manually
map

processes
over cores

Change
concurrency

model

How do we make it
easy to write
concurrent
programs?

have a language
with only 3 concurrency

primitives

Easy to
remember

spawn
send

receive
Spawn creates a
parallel process

shared memory
semaphores

mutexes
monitors
spin locks

critical regions
futures
locks

caches
threads

thread-safety

No

Pure message
passing

Why Pure
 Message
Passing?

and isolation

Why pure
message
passing?

It’s PURE OO

One programming model

Why pure message
passing?

One Programming Model

• Cannot do distributed programming without
message passing it’s impossible

• Want same way to do distributed and non-
distributed programming

• Must use message passing to do non-
distributed programming

Obeys the
laws of physics

Why pure message
passing?

Which laws of physics?

Messages travel at <= Speed of light

Causality: If B depends upon the state of A,
and A and B are separated in space, then A
must send a message to B before B can do
anything

We only know how
things were
not how things are

Details

spreading processes
is difficult

OTP team at
Ericsson (2-3 people know the

multi-core part)

100K
programmers??
know nothing

about multi-core

Their programs
should run

0.75 x N times
faster on N core

computers

Why Pure
 Message
Passing?

and isolation

Failure

Computer

What happens if the entire computer crashes?

Computer 1 Computer 2

If computer 1 crashes computer 2 takes over

If computer 2 crashes computer 1 takes over

Impossible with
shared memory and
dangling pointers

P(fail) = 10^-3
P(fail)^2 = 10^-6

100 9’s reliability with 34 computers

The key is independence
No dangling pointers
No shared memory

No synchronous events

Reliability

Scalability
Can easily scale horizontally if

processes are independent

Solves “massively parallel” problems
which are very common

Key is independent
isolated computations

One of 6 pre-conditions
read my PhD thesis

Shared memory
is evil

Does this
work?

Yes
WhatsApp,

Klarna,
Ericsson,

…

No
Nitty gritty in-memory

stuff (a few % of all SW)

Erlang is also

• Functional

• Dynamically typed

• Has Immutable values (data)

These are GOOD
properties

Values are immutable

X = 7

9

7 means 7

Immutable values
are cacheable

Fault tolerance
with immutable values

loop(State) ->
 receive
 F ->
 try F(State) of
 error:Why ->
 loop(State);
 NewState ->
 loop(NewState)
 end

If you can’t change state you don’t need to lock it

The BEAM

Erlang
Prolog Emulator
C Emulator “Jam”
Improved C emulator “Beam”
Native code “Hype”
JIT (work in progress)
Erlang on Xen (super elasticity)
“Beam langages” (Elixir, LFE, …)

Inside the Beam

Create a process
Send a messages
Fast context switch
Small processes
One stack+heap per processes
No shared memory
Only pure copying message passing

200+ man
years of work

Learning

Q: Can we make reliable systems
that behave reasonably from
unreliable components?

A: Yes

Thank you

have a fun conference

