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Background: What is an RDD? 

• Dependencies 

• Partitions 

• Compute function: Partition => Iterator[T] 
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Opaque Computation 
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Opaque Data 



RDD Programming Model 
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Construct execution DAG using low level RDD 
operators. 



Spark SQL Come to Rescue 

• More efficient: Only process structural data, 
this limits what can be expressed but enables 
optimization. 
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Spark SQL Come to Rescue 

• More efficient: Only process structural data, 
this limits what can be expressed but enables 
optimization. 

• High-level API: SQL, DataFrame/Dataset 
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Write less code 
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Not Just Less Code, Faster Too! 
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RDD Scala 

RDD Python 

DataFrame Scala 

DataFrame Python 

DataFrame R 

DataFrame SQL 

Time to Aggregate 10 million int pairs (secs)      



The not-so-secret truth... 
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is about more than SQL. 
 

SQL 



Spark SQL Overview 
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Catalyst: The frontend 
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How Catalyst Works: An Overview 
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Trees: Abstractions of Users’ 
Programs 

SELECT sum(v) 
FROM ( 
  SELECT 
    t1.id, 
    1 + 2 + t1.value AS v 
  FROM t1 JOIN t2 
  WHERE 
    t1.id = t2.id AND 
    t2.id > 50 * 1000) tmp 
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Trees: Abstractions of Users’ 
Programs 

SELECT sum(v) 
FROM ( 
  SELECT 
    t1.id, 
    1 + 2 + t1.value AS v 
  FROM t1 JOIN t2 
  WHERE 
    t1.id = t2.id AND 
    t2.id > 50 * 1000) tmp 

Expression 
• An expression 
represents a new value, 
computed based on 
input values 
• e.g. 1 + 2 + t1.value 
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Trees: Abstractions of Users’ 
Programs 

SELECT sum(v) 
FROM ( 
  SELECT 
    t1.id, 
    1 + 2 + t1.value AS v 
  FROM t1 JOIN t2 
  WHERE 
    t1.id = t2.id AND 
    t2.id > 50 * 1000) tmp 

Query Plan 

Scan 

(t1) 

Scan 

(t2) 

Join 

Filter 

Project 

Aggregate sum(v) 

t1.id, 
1+2+t1.value 
as v 

t1.id=t2.id 
t2.id>50*1000 



Logical Plan 

• A Logical Plan describes 
computation on datasets 
without defining how to 
conduct the computation 
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Scan 

(t1) 
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(t2) 

Join 

Filter 

Project 

Aggregate sum(v) 

t1.id, 
1+2+t1.value 
as v 

t1.id=t2.id 
t2.id>50*1000 



Physical Plan 

• A Physical Plan describes 
computation on datasets with 
specific definitions on how to 
conduct the computation 
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Parquet 

Scan 

(t1) 

JSON Scan 

(t2) 

Sort-Merge 

Join 

Filter 

Project 

Hash-

Aggregate 
sum(v) 

t1.id, 
1+2+t1.value 
as v 

t1.id=t2.id 
t2.id>50*1000 



21 

How Catalyst Works: An Overview 
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• A function associated with every tree used to 
implement a single rule 

 

 

Transform 
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Attribute 

(t1.value) 

Add 

Add 

Literal(1) Literal(2) 

1 + 2 + t1.value 

Attribute 

(t1.value) 

Add 

Literal(3) 

3+ t1.value Evaluate 1 + 2 
once 

Evaluate 1 + 
2 for every 
row 



Transform 

• A transform is defined as a Partial Function 

• Partial Function: A function that is defined for 
a subset of its possible arguments 
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val expression: Expression = ... 
expression.transform { 
  case Add(Literal(x, IntegerType), Literal(y, IntegerType)) => 
    Literal(x + y) 
} 

Case statement determine if the partial function is defined for a given input 



val expression: Expression = ... 
expression.transform { 
  case Add(Literal(x, IntegerType), Literal(y, IntegerType)) => 
    Literal(x + y) 
} 

Transform 
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val expression: Expression = ... 
expression.transform { 
  case Add(Literal(x, IntegerType), Literal(y, IntegerType)) => 
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} 

Transform 
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Combining Multiple Rules 
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Combining Multiple Rules 
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Combining Multiple Rules 
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Combining Multiple Rules 
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Scan 
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Unresolved 
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• Analysis: Transforms an Unresolved Logical Plan to 
a Resolved Logical Plan 
• Unresolved => Resolved: Use Catalog to find where 

datasets and columns are coming from and  types of 
columns 

• Logical Optimization: Transforms a Resolved 
Logical Plan to an Optimized Logical Plan 

• Physical Planning: Transforms a Optimized Logical 
Plan to a Physical Plan 



The Backend Execution Engine 
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G. Graefe, Volcano— An Extensible and Parallel Query Evaluation System, 

In IEEE Transactions on Knowledge and Data Engineering 1994 



Volcano Iterator Model 

• Standard for 30 years: 
almost all databases do it 

 

• Each operator is an 
“iterator” that 
consumes records from 
its input operator 

Scan 

(t1) 

Scan 

(t2) 

Join 

Filter 

Project 

data rows data rows 



How Spark SQL Run Queries 
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SELECT name 
FROM person 
WHERE age < 30 

Parquet Scan 

(person) 

Filter 

Project name 

age < 30 



How Spark SQL Run Queries 
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How Spark SQL Run Queries 
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How Spark SQL Run Queries 
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How Spark SQL Run Queries 
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How Spark SQL Run Queries 
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Project 

Filter 

Parquet Scan 



Data Exchange 
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Parquet 

Scan 

HashAggregate 
group by: dept 
output: AVG(age) 



Data Exchange 
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(dept=“a”, age=20) 
(dept=“a”, age=22) 
(dept=“b”, age=18) 

(dept=“b”, age=26) 
(dept=“b”, age=22) 
(dept=“c”, age=24) 

Partition 1 Partition n 

… 

mapPartitions 
dept=a ageCount=123, ageSum=2312 

dept=b ageCount=45, ageSum=912 

… … 



Data Exchange 
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Parquet 

Scan 

HashAggregate 
group by: dept 
output: AVG(age) 

Parquet 

Scan 

HashAggregate 

ShuffleExchang

e 

partitioned by: 
dept 



Optimized Execution 
with Project Tungsten 

Binary encoding of row object 

Expression code generation 

Whole stage code generation 

Vectorization 
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The overheads of JVM objects 

“abcd
” 
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• Native: 4 bytes with UTF-8 
encoding 

• Java: 48 bytes 

 
java.lang.String object internals: 
OFFSET  SIZE   TYPE DESCRIPTION                    VALUE 
     0     4        (object header)                ... 
     4     4        (object header)                ... 
     8     4        (object header)                ... 
    12     4 char[] String.value                   [] 
    16     4    int String.hash                    0 
    20     4    int String.hash32                  0 
Instance size: 48 bytes (reported by Instrumentation API) 

12 byte object 
header 

8 byte 
hashcode 

20 bytes data + overhead
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“bricks

” 

Tungsten’s Compact Encoding 
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0x0 123 32L 48L 4 
“data

” 

(123, “data”, “bricks”)  

Null bitmap 

Offset to data 

Offset to data Field lengths 



Less Objects Creation 
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Operator 

Creates row objects 
(and column 
objects) when 
outputs new records 

Row Object 

Operator 

Overwrites the 
byte array when 
outputs new 
records 

Byte Array 

Row Object Byte Array 



Manual Memory Management 
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Memory Manager 
Page 

Operator 

Operator 

Operator 

allocate 
grant 

allocate 
grant 

allocate 
grant 



How to Evaluate Expression 
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Literal(2) 

Add 

Add 

Attribute(a) Literal(1) 

a + 1 + 2 

Add.eval 

Attribute.eval 

Add.eval 

Function calls 



Expression Code Generation 
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df.where(df("year") > 2015) 

GreaterThan(year#234, Literal(2015)) 

boolean filter(Object baseObject) { 
   int offset = baseOffset + bitSetWidthInBytes + 3*8L; 
   int value = Platform.getInt(baseObject, offset); 
   return value34 > 2015; 
} 

DataFrame Code / SQL 

Catalyst Expressions 

Low-level Java code 
JVM intrinsic JIT-ed to  

pointer arithmetic 

Platform.getInt(baseObject, offset); 



Expression Code Generation 
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Saves a lot 
of virtual 
function 
calls and 
boxing 
costs! 



After Expression Code Generation 

54 

Project 

Filter 

Parquet Scan 
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What We Really Run 
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What We Really Run 
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Byte Array 

Byte Array 

Project 

Byte Array 

Filter 



Whole Stage Code Generation 

Fusing operators together: 

• Identify chains of operators (“stages”) 

• Compile each stage into a single function 



Whole Stage Codegen: Planner 



Scan 

Filter 

Project 

Aggregate 
count(*) 

long count = 0; 
for (ss_item_sk in store_sales) { 
  if (ss_item_sk == 1000) { 
    count += 1; 
  } 
} 

Whole Stage Codegen: 

Generate code like handwritten 



Where Can We Push Further? 
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Iterator[Row](Byte Array) 

Iterator[Row](Byte Array) 

Stage 

Iterator[Row](Byte Array) 

Stage 

Iterator.next 
wastes a lot 
performance! 



Vectorization: Batch + Columnar 

Format 
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Iterator[RowBatch] 

Iterator[RowBatch] 

Stage 

Iterator[RowBatch] 

Stage 

1 2 3 

john mike sally 

4.1 3.5 6.4 

Columnar 
Format 



Why columnar? 

1. More efficient: denser storage, regular data access, easier to 

index into 

2. More compatible: Most high-performance external systems 

are already columnar (numpy, TensorFlow, Parquet); zero 

serialization/copy to work with them 

3. Easier to extend: process encoded data 



Parquet 11 million 
rows/sec 

Parquet 
vectorized 

90 million 
rows/sec 

Note: End-to-end, single thread, single column, and data originated in Parquet on disk 

High throughput 



Putting it All Together 



Operator Benchmarks: Cost/Row 

(ns) 

5-30x 
Speedups 



Operator Benchmarks: Cost/Row 

(ns) 

Radix Sort 
10-100x 
Speedups 



Operator Benchmarks: Cost/Row 

(ns) 

Shuffling 
still the 
bottleneck 



Operator Benchmarks: Cost/Row 

(ns) 

10x 
Speedup 



TPC-DS (Scale Factor 1500, 100 

cores) 

Q
u

e
ry

 T
im

e
 

Query # 

Spark 2.0 Spark 1.6 

Lower is Better 



What’s Next? 



Spark 2.1, 2.2 and beyond 

1. SPARK-16026: Cost Based Optimizer 
- Leverage table/column level statistics to optimize joins and aggregates 

- Statistics Collection Framework (Spark 2.1) 

- Cost Based Optimizer (Spark 2.2) 

2. Boosting Spark’s Performance on Many-Core Machines 
- In-memory/ single node shuffle 

3. Improving quality of generated code and better integration 

with the in-memory column format in Spark 



Further Reading 

http://tinyurl.com/project-tungsten 



Thank you. 


