
Spark SQL:
A compiler from queries to
RDDs

Wenchen Fan
SDCC 2016

Agenda

• Why Spark SQL?

• The Frontend: Catalyst

• The Backend

• The Tungsten Project

• Benchmark

• What’s next

2

Background: What is an RDD?

• Dependencies

• Partitions

• Compute function: Partition => Iterator[T]

3

Background: What is an RDD?

• Dependencies

• Partitions

• Compute function: Partition => Iterator[T]

4

Opaque Computation

Background: What is an RDD?

• Dependencies

• Partitions

• Compute function: Partition => Iterator[T]

5

Opaque Data

RDD Programming Model

6

Construct execution DAG using low level RDD
operators.

Spark SQL Come to Rescue

• More efficient: Only process structural data,
this limits what can be expressed but enables
optimization.

7

Spark SQL Come to Rescue

• More efficient: Only process structural data,
this limits what can be expressed but enables
optimization.

• High-level API: SQL, DataFrame/Dataset

8

Write less code

9

Not Just Less Code, Faster Too!

10

0 2 4 6 8 10

RDD Scala

RDD Python

DataFrame Scala

DataFrame Python

DataFrame R

DataFrame SQL

Time to Aggregate 10 million int pairs (secs)

The not-so-secret truth...

11

is about more than SQL.

SQL

Spark SQL Overview

12

SQL AST

DataFrame
Unresolved
Logical Plan

Logical Plan
Optimized

Logical Plan
RDDs

Selected
Physical

Plan

Analysis
Logical

Optimization
Physical
Planning

C
o

st
 M

o
d

e
l

Physical
Plans

Code
Generation

Catalog

DataFrames, Datasets and SQL
share the same optimization/execution pipeline

Dataset

Catalyst: The frontend

13

SQL AST

DataFrame
Unresolved
Logical Plan

Logical Plan
Optimized

Logical Plan
RDDs

Selected
Physical

Plan

Analysis
Logical

Optimization
Physical
Planning

C
o

st
 M

o
d

e
l

Physical
Plans

Code
Generation

Catalog Dataset

14

How Catalyst Works: An Overview

SQL AST

DataFrame

Dataset

Query Plan
Optimized
Query Plan

RDDs

Transformations

Catalys
t

Abstractions of users’ programs
(Trees)

15

How Catalyst Works: An Overview

SQL AST

DataFrame

Dataset

Query Plan
Optimized
Query Plan

RDDs

Transformations

Catalys
t

Abstractions of users’ programs
(Trees)

16

Trees: Abstractions of Users’
Programs

SELECT sum(v)
FROM (
 SELECT
 t1.id,
 1 + 2 + t1.value AS v
 FROM t1 JOIN t2
 WHERE
 t1.id = t2.id AND
 t2.id > 50 * 1000) tmp

17

Trees: Abstractions of Users’
Programs

SELECT sum(v)
FROM (
 SELECT
 t1.id,
 1 + 2 + t1.value AS v
 FROM t1 JOIN t2
 WHERE
 t1.id = t2.id AND
 t2.id > 50 * 1000) tmp

Expression
• An expression
represents a new value,
computed based on
input values
• e.g. 1 + 2 + t1.value

18

Trees: Abstractions of Users’
Programs

SELECT sum(v)
FROM (
 SELECT
 t1.id,
 1 + 2 + t1.value AS v
 FROM t1 JOIN t2
 WHERE
 t1.id = t2.id AND
 t2.id > 50 * 1000) tmp

Query Plan

Scan

(t1)

Scan

(t2)

Join

Filter

Project

Aggregate sum(v)

t1.id,
1+2+t1.value
as v

t1.id=t2.id
t2.id>50*1000

Logical Plan

• A Logical Plan describes
computation on datasets
without defining how to
conduct the computation

19

Scan

(t1)

Scan

(t2)

Join

Filter

Project

Aggregate sum(v)

t1.id,
1+2+t1.value
as v

t1.id=t2.id
t2.id>50*1000

Physical Plan

• A Physical Plan describes
computation on datasets with
specific definitions on how to
conduct the computation

20

Parquet

Scan

(t1)

JSON Scan

(t2)

Sort-Merge

Join

Filter

Project

Hash-

Aggregate
sum(v)

t1.id,
1+2+t1.value
as v

t1.id=t2.id
t2.id>50*1000

21

How Catalyst Works: An Overview

SQL AST

DataFrame

Dataset

(Java/Scala)

Query Plan
Optimized

Query Plan
RDDs

Transformations

Catalys
t

Abstractions of users’ programs

(Trees)

• A function associated with every tree used to
implement a single rule

Transform

22

Attribute

(t1.value)

Add

Add

Literal(1) Literal(2)

1 + 2 + t1.value

Attribute

(t1.value)

Add

Literal(3)

3+ t1.value Evaluate 1 + 2
once

Evaluate 1 +
2 for every
row

Transform

• A transform is defined as a Partial Function

• Partial Function: A function that is defined for
a subset of its possible arguments

23

val expression: Expression = ...
expression.transform {
 case Add(Literal(x, IntegerType), Literal(y, IntegerType)) =>
 Literal(x + y)
}

Case statement determine if the partial function is defined for a given input

val expression: Expression = ...
expression.transform {
 case Add(Literal(x, IntegerType), Literal(y, IntegerType)) =>
 Literal(x + y)
}

Transform

24

Attribute

(t1.value)

Add

Add

Literal(1) Literal(2)

1 + 2 + t1.value

val expression: Expression = ...
expression.transform {
 case Add(Literal(x, IntegerType), Literal(y, IntegerType)) =>
 Literal(x + y)
}

Transform

25

Attribute

(t1.value)

Add

Add

Literal(1) Literal(2)

1 + 2 + t1.value

val expression: Expression = ...
expression.transform {
 case Add(Literal(x, IntegerType), Literal(y, IntegerType)) =>
 Literal(x + y)
}

Transform

26

Attribute

(t1.value)

Add

Add

Literal(1) Literal(2)

1 + 2 + t1.value

val expression: Expression = ...
expression.transform {
 case Add(Literal(x, IntegerType), Literal(y, IntegerType)) =>
 Literal(x + y)
}

Transform

27

Attribute

(t1.value)

Add

Add

Literal(1) Literal(2)

1 + 2 + t1.value

Attribute

(t1.value)

Add

Literal(3)

3+ t1.value

Combining Multiple Rules

28

Scan

(t1)

Scan

(t2)

Join

Filter

Project

Aggregate sum(v)

t1.id,
1+2+t1.value
as v

t1.id=t2.id
t2.id>50*1000

Predicate Pushdown

Scan

(t1)

Scan

(t2)

Join

Filter

Project

Aggregate sum(v)

t1.id,
1+2+t1.value
as v

t2.id>50*1000

t1.id=t2.id

Combining Multiple Rules

29

Constant
Folding

Scan

(t1)

Scan

(t2)

Join

Filter

Project

Aggregate sum(v)

t1.id,
1+2+t1.value
as v

t2.id>50*1000

t1.id=t2.id

Scan

(t1)

Scan

(t2)

Join

Filter

Project

Aggregate sum(v)

t1.id,
3+t1.value as
v

t2.id>50000

t1.id=t2.id

Combining Multiple Rules

30

Column
Pruning

Scan

(t1)

Scan

(t2)

Join

Filter

Project

Aggregate sum(v)

t1.id,
3+t1.value as
v

t2.id>50000

t1.id=t2.id

Scan

(t1)

Scan

(t2)

Join

Filter

Project

Aggregate sum(v)

t1.id,
3+t1.value as
v

t2.id>50000

t1.id=t2.id

Project Project
t1.id
t1.value t2.id

Combining Multiple Rules

31

Scan

(t1)

Scan

(t2)

Join

Filter

Project

Aggregate sum(v)

t1.id,
1+2+t1.value
as v

t1.id=t2.id
t2.id>50*1000

Scan

(t1)

Scan

(t2)

Join

Filter

Project

Aggregate sum(v)

t1.id,
3+t1.value as
v

t2.id>50000

t1.id=t2.id

Project Project t1.id
t1.value

t2.id

Before
transformations

After
transformations

32

SQL AST

DataFrame

Dataset

(Java/Scala

)

Query Plan
Optimized

Query Plan
RDDs

Unresolved

Logical Plan
Logical Plan

Optimized

Logical Plan

Selected

Physical

Plan

C
o
s
t
M

o
d
e
l

Physical

Plans

Catalog

Analysis
Logical

Optimization

Physical

Planning

Catalys
t

33

Unresolved

Logical Plan
Logical Plan

Optimized

Logical Plan

Selected

Physical

Plan

C
o
s
t
M

o
d
e
l

Physical

Plans

Catalog

Analysis
Logical

Optimization

Physical

Planning

• Analysis: Transforms an Unresolved Logical Plan to
a Resolved Logical Plan
• Unresolved => Resolved: Use Catalog to find where

datasets and columns are coming from and types of
columns

• Logical Optimization: Transforms a Resolved
Logical Plan to an Optimized Logical Plan

• Physical Planning: Transforms a Optimized Logical
Plan to a Physical Plan

The Backend Execution Engine

34

SQL AST

DataFrame
Unresolved

Logical Plan
Logical Plan

Optimized

Logical Plan
RDDs

Selected

Physical

Plan

Analysis
Logical

Optimization

Physical

Planning

C
o

s
t
M

o
d
e

l

Physical

Plans

Code

Generation

Catalog Dataset

G. Graefe, Volcano— An Extensible and Parallel Query Evaluation System,

In IEEE Transactions on Knowledge and Data Engineering 1994

Volcano Iterator Model

• Standard for 30 years:
almost all databases do it

• Each operator is an
“iterator” that
consumes records from
its input operator

Scan

(t1)

Scan

(t2)

Join

Filter

Project

data rows data rows

How Spark SQL Run Queries

37

SELECT name
FROM person
WHERE age < 30

Parquet Scan

(person)

Filter

Project name

age < 30

How Spark SQL Run Queries

38

How Spark SQL Run Queries

39

How Spark SQL Run Queries

40

How Spark SQL Run Queries

41

How Spark SQL Run Queries

42

Project

Filter

Parquet Scan

Data Exchange

43

Parquet

Scan

HashAggregate
group by: dept
output: AVG(age)

Data Exchange

44

(dept=“a”, age=20)
(dept=“a”, age=22)
(dept=“b”, age=18)

(dept=“b”, age=26)
(dept=“b”, age=22)
(dept=“c”, age=24)

Partition 1 Partition n

…

mapPartitions
dept=a ageCount=123, ageSum=2312

dept=b ageCount=45, ageSum=912

… …

Data Exchange

45

Parquet

Scan

HashAggregate
group by: dept
output: AVG(age)

Parquet

Scan

HashAggregate

ShuffleExchang

e

partitioned by:
dept

Optimized Execution
with Project Tungsten

Binary encoding of row object

Expression code generation

Whole stage code generation

Vectorization

46

The overheads of JVM objects

“abcd
”

47

• Native: 4 bytes with UTF-8
encoding

• Java: 48 bytes

java.lang.String object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE
 0 4 (object header) ...
 4 4 (object header) ...
 8 4 (object header) ...
 12 4 char[] String.value []
 16 4 int String.hash 0
 20 4 int String.hash32 0
Instance size: 48 bytes (reported by Instrumentation API)

12 byte object
header

8 byte
hashcode

20 bytes data + overhead

6
“bricks

”

Tungsten’s Compact Encoding

48

0x0 123 32L 48L 4
“data

”

(123, “data”, “bricks”)

Null bitmap

Offset to data

Offset to data Field lengths

Less Objects Creation

49

Operator

Creates row objects
(and column
objects) when
outputs new records

Row Object

Operator

Overwrites the
byte array when
outputs new
records

Byte Array

Row Object Byte Array

Manual Memory Management

50

Memory Manager
Page

Operator

Operator

Operator

allocate
grant

allocate
grant

allocate
grant

How to Evaluate Expression

51

Literal(2)

Add

Add

Attribute(a) Literal(1)

a + 1 + 2

Add.eval

Attribute.eval

Add.eval

Function calls

Expression Code Generation

52

df.where(df("year") > 2015)

GreaterThan(year#234, Literal(2015))

boolean filter(Object baseObject) {
 int offset = baseOffset + bitSetWidthInBytes + 3*8L;
 int value = Platform.getInt(baseObject, offset);
 return value34 > 2015;
}

DataFrame Code / SQL

Catalyst Expressions

Low-level Java code
JVM intrinsic JIT-ed to

pointer arithmetic

Platform.getInt(baseObject, offset);

Expression Code Generation

53

Saves a lot
of virtual
function
calls and
boxing
costs!

After Expression Code Generation

54

Project

Filter

Parquet Scan

55

What We Really Run

56

What We Really Run

57

Byte Array

Byte Array

Project

Byte Array

Filter

Whole Stage Code Generation

Fusing operators together:

• Identify chains of operators (“stages”)

• Compile each stage into a single function

Whole Stage Codegen: Planner

Scan

Filter

Project

Aggregate
count(*)

long count = 0;
for (ss_item_sk in store_sales) {
 if (ss_item_sk == 1000) {
 count += 1;
 }
}

Whole Stage Codegen:

Generate code like handwritten

Where Can We Push Further?

61

Iterator[Row](Byte Array)

Iterator[Row](Byte Array)

Stage

Iterator[Row](Byte Array)

Stage

Iterator.next
wastes a lot
performance!

Vectorization: Batch + Columnar

Format

62

Iterator[RowBatch]

Iterator[RowBatch]

Stage

Iterator[RowBatch]

Stage

1 2 3

john mike sally

4.1 3.5 6.4

Columnar
Format

Why columnar?

1. More efficient: denser storage, regular data access, easier to

index into

2. More compatible: Most high-performance external systems

are already columnar (numpy, TensorFlow, Parquet); zero

serialization/copy to work with them

3. Easier to extend: process encoded data

Parquet 11 million
rows/sec

Parquet
vectorized

90 million
rows/sec

Note: End-to-end, single thread, single column, and data originated in Parquet on disk

High throughput

Putting it All Together

Operator Benchmarks: Cost/Row

(ns)

5-30x
Speedups

Operator Benchmarks: Cost/Row

(ns)

Radix Sort
10-100x
Speedups

Operator Benchmarks: Cost/Row

(ns)

Shuffling
still the
bottleneck

Operator Benchmarks: Cost/Row

(ns)

10x
Speedup

TPC-DS (Scale Factor 1500, 100

cores)

Q
u

e
ry

 T
im

e

Query #

Spark 2.0 Spark 1.6

Lower is Better

What’s Next?

Spark 2.1, 2.2 and beyond

1. SPARK-16026: Cost Based Optimizer
- Leverage table/column level statistics to optimize joins and aggregates

- Statistics Collection Framework (Spark 2.1)

- Cost Based Optimizer (Spark 2.2)

2. Boosting Spark’s Performance on Many-Core Machines
- In-memory/ single node shuffle

3. Improving quality of generated code and better integration

with the in-memory column format in Spark

Further Reading

http://tinyurl.com/project-tungsten

Thank you.

