CCAI2017

July 23, 2017

What Is My Talk about?

- Machine learning from big data is successful.
 - Great work on large-scale parallel implementation.
- However, there are various applications where massive labeled data is not available.
 - Medicine, manufacturing, disaster, infrastructure...

In this talk, I will introduce our recent advances in classification from limited information.

A large number of labeled samples yield better classification performance.

Optimal convergence rate:

$$\mathcal{O}\left(n^{-1/2}\right)$$

Unsupervised Classification

Since collecting labeled samples is costly, let's learn a classifier from unlabeled data.

- This is equivalent to clustering.
- To justify this, need the assumption that each cluster corresponds to each class.
 - This is rarely satisfied in practice.

Semi-Supervised Classification ⁵

Zhou, Bousquet, Lal, Weston & Schölkopf (NIPS2003) and many

- Use a large number of unlabeled samples and a small number of labeled samples:
- Find a decision boundary along cluster structure induced by unlabeled samples:
 - Sometimes very useful!
 - But same weakness as unsupervised classification.

Organization

- 1. Classification of classification
- 2. Classification from UU data
- 3. Classification from PU data
- 4. Classification from PNU data
- 5. Classification from complementary labels
- 6. Introduction RIKEN Center for AIP

UU Classification: Setup

du Plessis, Niu & Sugiyama (TAAI2013)

9

Given: Two sets of unlabeled data

$$\{oldsymbol{x}_i\}_{i=1}^n \stackrel{ ext{i.i.d.}}{\sim} p(oldsymbol{x}) \ \ \{oldsymbol{x}'_i\}_{i=1}^{n'} \stackrel{ ext{i.i.d.}}{\sim} p'(oldsymbol{x})$$

Assumption: Only class-priors are different $p(y) \neq p'(y)$ $p(\boldsymbol{x}|y) = p'(\boldsymbol{x}|y)$

Goal: Obtain a classifier

Optimal UU Classifier

du Plessis, Niu & Sugiyama (TAAI2013)

1()

Boundary

Sign of the difference of class-posteriors:

$$g(\boldsymbol{x}) = \operatorname{sign}[p(y = +1|\boldsymbol{x}) - p(y = -1|\boldsymbol{x})]$$

Under equal test class-prior q(y = +1) = 1/2,

$$g(\boldsymbol{x}) = C \operatorname{sign}[p(\boldsymbol{x}) - p'(\boldsymbol{x})]$$
$$C = \operatorname{sign}[p(y = +1) - p'(y = +1)]$$

Sign of *C* is unknown, but just knowing sign[p(x) - p'(x)]still allows optimal separation!

UU Classifier Training $\operatorname{sign}[p(\boldsymbol{x}) - p'(\boldsymbol{x})]$

Difference of kernel density estimators:

- Estimate $p(\boldsymbol{x}), p'(\boldsymbol{x})$ from $\{\boldsymbol{x}_i\}_{i=1}^n, \{\boldsymbol{x}'_i\}_{i=1}^{n'}$, separately.
- Simple but systematic under-estimation of p(x) p'(x).

Anderson, Hall & Titterington (J. Multivariate Analysis 1994) Direct estimation of density-difference:

- Fit model $f(\boldsymbol{x})$ to $p(\boldsymbol{x}) p'(\boldsymbol{x})$ directly without estimating p(x), p'(x).
- Linear least-squares formulation yields global analytic solution!

Direct estimation of sign of density-difference: du Plessis, Niu & Sugiyama (TAAI2013)

- Most direct approach (following Vapnik's principle!).
- Non-convex optimization is involved (use, e.g., CCCP).

Kim & Scott (IEEE-TPAMI2010) Sugiyama, Suzuki, Kanamori, du Plessis, Liu & Takeuchi (NIPS2012, NeCo2013)

$$\min_{f} \int \left(f(\boldsymbol{x}) - \left\{ p(\boldsymbol{x}) - p'(\boldsymbol{x}) \right\} \right)^2 \mathrm{d}\boldsymbol{x}$$

$$\min_{f} \int \left(f(\boldsymbol{x}) - \left\{ p(\boldsymbol{x}) - p'(\boldsymbol{x}) \right\} \right)^{2} \mathrm{d}\boldsymbol{x}$$

Experiments

12

Misclassification error rate: average (std)

	U	U classifica	ation	Clustering	Spectral Ng et al.	Infomax Sugiyama et al.	
5% t-test si	$\operatorname{ign}[p(oldsymbol{x}) - p'(oldsymbol{x})]$	$) _ p(oldsymbol{x}) - p'(oldsymbol{x})$	$p(\boldsymbol{x}) = p(\boldsymbol{x}), p'(\boldsymbol{x})$	k-means	(NIPS2001)	(ICML2011)	
Dataset	DSDD	LSDD	KDE	KM	SC	SMIC	
australian	.244(.116)	.259(.088)	.355(.104)	.265(.080)	.376(.065)	.308 (.107)	
banana	.338(.094)	.339(.100)	.365(.067)	.433(.049)	.427(.069)	.424 (.070)	
diabetes	.340(.075)	.361(.124)	.345(.034)	.373(.063)	.380(.048)	.371 (.114)	
german	.375(.042)	.380(.093)	.354(.057)	.437(.024)	.445(.057)	.438 (.041)	
heart	.270(.133)	.247(.084)	.354(.052)	.264(.059)	.315(.081)	.327 (.089)	
image	.331(.078)	.350(.067)	.350(.039)	.384(.031)	.354(.049)	.382 (.050)	
ionosphere	.291 (.099)	.356(.066)	.345(.048)	.330(.070)	.322(.058)	.314 (.107)	
saheart	.378(.093)	.353(.057)	.363(.066)	.419(.082)	.395(.022)	.385 (.040)	
thyroid	.227(.098)	.251(.087)	.302(.022)	.326(.061)	.329(.047)	.307 (.076)	
twonorm	.164(.188)	.153(.121)	.352(.096)	.036(.053)	.042(.122)	.049 (.120)	

n = n' = 40 p(y = +1) = 0.35 p'(y = +1) = 0.65

UU classification with direct estimation of (sign of) density difference works well !

- Given two unlabeled datasets with different class-priors, we estimate the sign of difference of class-posteriors: sign[p(x) p'(x)]
- Same convergence rate as fully supervised case can be achieved! $O(n^{-1/2})$
- Unlike classification from label proportions, we do not have to know class priors.

Quadrianto, Smola, Caetano & Le (JMLR2009)

Organization

- 1. Classification of classification
- 2. Classification from UU data
- 3. Classification from PU data
- 4. Classification from PNU data
- 5. Classification from complementary labels
- 6. Introduction RIKEN Center for AIP

PU Classification: Setup

Given: Positive and unlabeled samples

$$\{(\boldsymbol{x}_i, y_i = +1)\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x}|y = +1)$$
$$\{\boldsymbol{x}'_i\}_{i=1}^{n'} \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x})$$

Goal: Obtain an (ordinary) PN classifier

Friend vs. non-friend

Classification Risk

16

Since we do not have N data in the PU setting, the risk cannot be directly estimated.

PU Unbiased Risk Estimation¹⁷

Natarajan, Dhillon, Ravikumar & Tewari (NIPS2013) du Plessis, Niu & Sugiyama (ICML2015)

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right] + (1-\pi) \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=-1)} \left[\ell \left(-f(\boldsymbol{x}) \right) \right]$$

Risk for P data
Risk for N data

- U-density is a mixture of P- and N-densities: $p(x) = \pi p(x|y = +1) + (1 - \pi)p(x|y = -1)$
- Eliminating the N-density yields

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right] + \mathbb{E}_{\boldsymbol{p}(\boldsymbol{x})-\pi \boldsymbol{p}(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(-f(\boldsymbol{x}) \right) \right]$$

 Unbiased risk estimation is possible only from PU data!

Theoretical Analysis

Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016) Estimation error bounds:

 $R(\hat{f}_{\rm PU}) - R(f^*) \le C(\delta) \left(\frac{2\pi}{\sqrt{n_{\rm P}}} + \frac{1}{\sqrt{n_{\rm U}}}\right)$ $R(\hat{f}_{\rm PN}) - R(f^*) \le C(\delta) \left(\frac{\pi}{\sqrt{n_{\rm P}}} + \frac{1-\pi}{\sqrt{n_{\rm N}}}\right)$

$$\begin{split} R(f) &= \mathbb{E}_{p(\boldsymbol{x},y)} \Big[\ell \Big(y f(\boldsymbol{x}) \Big) \Big] \\ f^* &= \operatorname{argmin}_f R(f) \end{split}$$

with probability $1 - \delta$

18

 $n_{\rm P}, n_{\rm N}, n_{\rm U}$: # of positive, negative and unlabeled samples

• PU (and PN) achieve optimal convergence rate. • Comparison: PU bound is smaller than PN if $\pi/\sqrt{n_{\rm P}} + 1/\sqrt{n_{\rm U}} < (1 - \pi)/\sqrt{n_{\rm N}}$

 PU can be better than PN provided a large number of PU data!

Further Correction

Kiryo, Niu, du Plessis & Sugiyama (arXiv2017)

PN formulation:

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right] + (1-\pi) \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=-1)} \left[\ell \left(-f(\boldsymbol{x}) \right) \right]$$

Risk for P data

19

PU formulation: $p(x) = \pi p(x|y = +1) + (1 - \pi)p(x|y = -1)$

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right] + \mathbb{E}_{p(\boldsymbol{x})-\pi p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(-f(\boldsymbol{x}) \right) \right]$$

Risk for N data is non-negative by definition, but its approximation from PU samples can be negative due to "difference of approximations".

• In particular, for flexible models such as deep nets.

Non-Negative PU Classification²⁰

We constrain the sample approximation term to be non-negative through back-prop training: $\widehat{R}(f) = \pi \widehat{\mathbb{E}}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell(f(\boldsymbol{x})) \right] + \max \left\{ 0, \ \widehat{\mathbb{E}}_{p(\boldsymbol{x})-\pi p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell(-f(\boldsymbol{x})) \right] \right\}$

• Now the risk estimator is biased. Is it really good?

$\frac{\text{Theoretical Analysis}}{\widehat{R}(f) = \pi \widehat{\mathbb{E}}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right] + \max \left\{ 0, \ \widehat{\mathbb{E}}_{p(\boldsymbol{x}) - \pi p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(- f(\boldsymbol{x}) \right) \right] \right\}$

■ $\hat{R}(f)$ is still consistent and its bias decreases exponentially: $\mathcal{O}(\exp(-1/n_{\rm P} + 1/n_{\rm U}))$

 $n_{\mathrm{P}}, n_{\mathrm{U}}$: # of positive and unlabeled samples

- In practice, we can ignore the bias of $\widehat{R}(f)$!
- Mean-squared error of $\widehat{R}(f)$ is not more than the original one.
 - In practice, $\widehat{R}(f)$ is more reliable!

Risk of $\operatorname{argmin}_{f} \widehat{R}(f)$ for linear models converges with optimal parametric order: $\mathcal{O}(1/\sqrt{n_{\mathrm{P}}} + 1/\sqrt{n_{\mathrm{U}}})$

Learned function is optimal.

Experiments

With a large number of unlabeled data, non-negative PU can even outperform PN!

- Binary CIFAR-10: Positive (airplane, automobile, ship, truck)
 Negative (bird, cat, deer, dog, frog, horse)
- 13-layer CNN with ReLU

 $n_{
m P} = 1000$ $n_{
m U} = 50000$ $\pi = 0.4$

23 PU Classification: Summary Just separating P and U is biased. To be unbiased, use composite loss °_ ° ` □ 0 0 $\tilde{\ell}(m) = \ell(m) - \ell(-m)$ for P data. Natarajan, Dhillon, Ravikumar & Tewari (NIPS2013) Optimal convergence rate achieved. $\ell(m) + \ell(-m) = \text{Const.}$ Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016) If $\ell(m) + \ell(-m) = \text{Const.}$, Ramp the same loss for P and U data. Margin du Plessis, Niu & Sugiyama (NIPS2014) $\ell(m) = am + b$ If $\tilde{\ell}(m) = am + b$, Double Squared optimization becomes convex. ****hinge Logistic du Plessis, Niu & Sugiyama (ICML2015) For deep nets, roundup the empirical false negative error. Margin Kiryo, Niu, du Plessis & Sugiyama (arXiv2017)

Organization

- 1. Classification of classification
- 2. Classification from UU data
- 3. Classification from PU data
- 4. Classification from PNU data
- 5. Classification from complementary labels
- 6. Introduction RIKEN Center for AIP

PNU Classification

Sakai, du Plessis, Niu & Sugiyama (ICML2017)

 \mathbf{O}

П

25

Negative

Х

Unlabeled

- PNU classification is Positive semi-supervised learning.
- Let's decompose this into PU, PN, and NU classification:
 - Each can be solved easily.
 - Combine two of them!

PU+NU Classification 26 Natural choice: Combine PU & NU (symmetric). $R_{\rm PU+NU}(f) = (1-\gamma)R_{\rm PU}(f) + \gamma R_{\rm NU}(f) \quad 0 \le \gamma \le 1$ NU PU Niu, du Plessis, Sakai, Ma Theoretical risk analysis: & Sugiyama (NIPS2016) • When PU<NU, PU<PN<NU or PN<PU<NU. • When NU<PU, NU<PN<PU or PN<NU<PU. PU+NU is not the best possible combination. PU+PN & NU+PN are the best combinations.

PN+PU & PN+NU Classification²⁷

Proposed method: Combine best methods:

• PN+PU classification: $R_{\text{PN+PU}}^{\gamma}(f) = (1 - \gamma)R_{\text{PN}}(f) + \gamma R_{\text{PU}}(f)$ $0 \le \gamma \le 1$

• PN+NU classification:

 $R_{\rm PN+NU}^{\gamma}(f) = (1-\gamma)R_{\rm PN}(f) + \gamma R_{\rm NU}(f) \quad 0 \le \gamma \le 1$

Theoretical Analysis

Generalization error bounds:

 $R_{0/1}(f) \le 2\widehat{R}_{\rm PN+PU}^{\gamma}(f) + \mathcal{O}(1/\sqrt{n_{\rm P}} + 1/\sqrt{n_{\rm N}} + 1/\sqrt{n_{\rm U}})$

 $R_{0/1}(f) \le 2\widehat{R}_{\rm PN+NU}^{\gamma}(f) + \mathcal{O}(1/\sqrt{n_{\rm P}} + 1/\sqrt{n_{\rm N}} + 1/\sqrt{n_{\rm U}})$

 $R_{0/1}(f) = \mathbb{E}_{p(\boldsymbol{x},y)} \Big[\ell_{0/1} \Big(yf(\boldsymbol{x}) \Big) \Big]$

 \widehat{R} : Empirical version of R

 $n_{\rm P}, n_{\rm N}, n_{\rm U}$: # of positive, negative and unlabeled samples

• Unlabeled data always helps without cluster assumptions!

- We use unlabeled data for loss evaluation, not for regularization (as manifold smoothing).
 - Label information is extracted from unlabeled data!

Experiments

Misclassification error rate: average (std)

H.C			\sim		-		AS ARE	
Dataset	n_{u}	π	$\widehat{\pi}$	Proposed	EntReg	LapSVM	SMIR	WellSVM
	1000	0.50	0.49(0.01)	27.4 (1.3)	26.6 (0.5)	26.1 (0.7)	40.1(3.9)	27.5(0.5)
Arts	5000	0.50	0.50 (0.01)	24.8(0.6)	26.1(0.5)	26.1(0.4)	30.1(1.6)	N/A
	10000	0.50	0.52(0.01)	25.6(0.7)	25.4(0.5)	25.5(0.6)	N/A	N/A
Deserts	1000	0.73	0.67 (0.01)	13.0 (0.5)	15.3 (0.6)	16.7 (0.8)	17.2 (0.8)	18.2(0.7)
	5000	0.73	0.67(0.01)	13.4(0.4)	13.3(0.5)	16.6(0.6)	24.4(0.6)	N/A
	10000	0.73	0.68(0.01)	13.3 (0.5)	13.7 (0.6)	16.8 (0.8)	N/A	N/A
	1000	0.65	0.57 (0.01)	22.4(1.0)	26.2(1.0)	26.6 (1.3)	28.2(1.1)	26.6 (0.8)
Fields	5000	0.65	0.57 (0.01)	20.6(0.5)	22.6 (0.6)	24.7 (0.8)	29.6(1.2)	N/A
	10000	0.65	0.57(0.01)	21.6(0.6)	22.5(0.6)	25.0(0.9)	N/A	N/A
Stadiums	1000	0.50	0.50 (0.01)	11.4 (0.4)	11.5 (0.5)	12.5(0.5)	17.4 (3.6)	11.7 (0.4)
	5000	0.50	0.50(0.01)	11.0(0.5)	10.9 (0.3)	11.1(0.3)	13.4(0.7)	N/A
	10000	0.50	0.51 (0.00)	10.7 (0.3)	10.9(0.3)	11.2 (0.2)	N/A	N/A
Platforms	1000	0.27	0.33 (0.01)	21.8 (0.5)	23.9 (0.6)	24.1(0.5)	30.1(2.3)	26.2(0.8)
	5000	0.27	0.34(0.01)	23.3(0.8)	24.4(0.7)	24.9(0.7)	26.6(0.3)	N/A
	10000	0.27	0.34(0.01)	21.4(0.5)	24.3(0.6)	24.8(0.5)	N/A	N/A
Temples	1000	0.55	0.51 (0.01)	43.9 (0.7)	43.9 (0.6)	43.4(0.6)	50.7 (1.6)	44.3 (0.5)
	5000	0.55	0.54 (0.01)	43.4 (0.9)	43.0 (0.6)	43.1 (1.0)	43.6 (0.7)	N/A
	10000	0.55	0.50(0.01)	45.2(0.8)	44.4 (0.8)	44.2 (0.7)	N/A	N/A

Proposed PN+PU & PN+NU works well!

Organization

- 1. Classification of classification
- 2. Classification from UU data
- 3. Classification from PU data
- 4. Classification from PNU data
- 5. Classification from complementary labels
- 6. Introduction RIKEN Center for AIP

Classification from Complementary Labels

Ishida, Niu & Sugiyama (arXiv2017)

31

Complementary label: $\bar{y} \in \{1, 2, \dots, c\}$

- Pattern x does not belong to class \overline{y} .
- Choosing a complementary class is less laborious than choosing an ordinary class label for large c.
- Goal: Learn a classifier from complementary labels.

$$\{(\boldsymbol{x}_i, \bar{y}_i)\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} \bar{p}(\boldsymbol{x}, \bar{y})$$
$$\bar{p}(\boldsymbol{x}, \bar{y}) = \frac{1}{c-1} \sum_{y \neq \bar{y}} p(\boldsymbol{x}, y)$$

Possible Approaches $\{(\boldsymbol{x}_i, \bar{y}_i)\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} \bar{p}(\boldsymbol{x}, \bar{y})$

32

Approach 1: Classification from partial labels Cour, Sapp & Taskar (JMLR2011)

- Multiple candidate classes are provided for each x_i .
- Complementary labels are the extreme case of partial labels given to all c 1 classes other than \bar{y}_i .

Approach 2: Multi-label classification

- Each x_i can belong to multiple classes.
- Negative label for \bar{y}_i and positives for the rest.

We want a more direct approach!

Unbiased Risk Estimation with ³³ Complimentary Labels

Ishida, Niu & Sugiyama (arXiv2017)

c-class classifier: $f(\mathbf{x}) = \underset{y \in \{1,...,c\}}{\operatorname{argmax}} g_y(\mathbf{x})$

 $g_y(\pmb{x})$: 1-vs-rest classifier for y

Classification risk:

$$R(f) = \mathbb{E}_{p(\boldsymbol{x},y)} \left[\sum_{y \neq y'} \ell \left(g_y(\boldsymbol{x}) - g_{y'}(\boldsymbol{x}) \right) \right]$$

$$\mathbb{E}: \text{Expectation}$$

For pairwise symmetric loss, risk is

$$R(f) = \frac{1}{c-1} \mathbb{E}_{\bar{p}(\boldsymbol{x},\bar{y})} \Big[\sum_{y \neq \bar{y}} \ell \Big(g_y(\boldsymbol{x}) - g_{\bar{y}}(\boldsymbol{x}) \Big) \Big] - \text{Const.}$$

Inbiased risk estimation is
$$\ell(m) = 1/(1+e^m)$$

• Unbiased risk estimation is possible from $\{(x_i, \bar{y}_i)\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} \bar{p}(x, \bar{y})$!

Theoretical Analysis

Estimation error:

$$R(f^*) - R(\hat{f}) = \mathcal{O}_p(n^{-1/2})$$
$$R(f) = \mathbb{E}_{p(\boldsymbol{x}, y)} \left[\mathcal{L}(f(\boldsymbol{x}), y) \right]$$
$$= \underset{f}{\operatorname{argmin}} \mathbb{E}_{p(\boldsymbol{x}, y)} \mathcal{L}(f(\boldsymbol{x}), y) \quad \hat{f} = \underset{f}{\operatorname{argmin}} \sum_{i=1}^n \bar{\mathcal{L}}(f(\boldsymbol{x}_i), \bar{y}_i)$$

Optimal parametric convergence rate!

Experiments

Correct classification rate: average (std)

Use only 1/(c-1) times less samples since 1 ordinary label corresponds to (c-1) complementary labels

Proposed method works well!

Dataset	Class	# train	# test	Proposed	Partial-label	Multi-label	Ordinary lab
WAVEFORM1	$1\sim 3$	1230	406	85.7(0.9)	84.1(1.5)	84.7(1.6)	85.8(0.9)
WAVEFORM2	$1\sim 3$	1221	400	84.4(1.3)	83.1(2.7)	81.8(2.3)	86.7(1.8)
SATIMAGE	$1\sim7$	415	211	67.2(7.0)	54.8(6.8)	51.6(6.0)	67.9(4.2)
SHUTTLE	1, 4, 5	2458	809	94.9(9.7)	97.5(0.7)	90.4(11.8)	97.5(0.8)
SEGMENTATION	$1 \sim 7$	29	299	36.1(6.8)	31.7(5.8)	26.6(5.4)	58.6(4.5)
PENDIGITS	$1\sim 5$	719	336	79.4(9.5)	73.2(6.4)	75.9(7.7)	78.8(2.9)
	$6 \sim 10$	719	335	77.7(3.8)	65.5(6.4)	72.0(8.6)	74.7(4.6)
	even #	719	335	74.0(7.3)	58.5(9.9)	65.7(6.3)	74.8(5.5)
	odd #	719	336	88.5(5.9)	74.6(4.4)	79.1(6.1)	84.0(8.8)
MNIST	$1 \sim 5$	5842	980	88.4(4.2)	71.5(7.4)	56.6(12.4)	77.9(0.4)
	$6 \sim 10$	5421	892	83.4(2.6)	67.4(8.1)	50.5(13.7)	77.0(4.5)
MINIST	even #	5421	892	85.3(2.2)	70.4(6.7)	61.7(11.1)	76.7(1.4)
	odd #	5842	958	85.0(3.7)	67.3(8.6)	57.3(13.0)	76.5(0.7)
	$1\sim 5$	3931	1280	87.6(5.9)	72.7(7.0)	64.2(12.6)	79.3(5.1)
DRIVE	$6 \sim 10$	3958	1318	84.9(5.7)	73.1(5.8)	69.7(9.3)	81.6(2.9)
DRIVE	even #	3932	1295	82.4(5.6)	72.9(6.6)	63.2(12.8)	83.5(5.3)
	odd #	3931	1310	76.9(8.0)	60.0(6.9)	51.6(9.3)	65.4(3.3)
	$1 \sim 5$	565	171	79.6(5.5)	67.6(6.0)	71.0(9.3)	82.2(4.3)
	$6 \sim 10$	550	178	73.2(6.3)	63.9(6.1)	61.2(10.6)	75,9(5.6)
LETTER	$11 \sim 15$	556	177	73.3(5.9)	66.6(3.4)	59.0(10.1)	75.4(5.0)
	$16 \sim 20$	550	184	71.5(5.9)	64.9(5.2)	63.5(7.0)	73.9(5.3)
	$21 \sim 25$	585	167	76.2(6.0)	68.3(8.1)	63.1(11.2)	77.1(5.1)
	$1\sim 5$	48	42	35.6(9.0)	37.0(9.3)	31.5(6.7)	54.9(6.7)
VOWEL	$6\sim 10$	48	42	32.6(7.5)	34.1(7.7)	30.0(9.8)	53.0(4.4)
VOWEL	even #	48	42	36.6(9.0)	39.9(10.5)	33.3(7.8)	62.1(5.6)
	odd #	48	42	28.2(9.0)	28.8(7.2)	23.2(4.8)	54.0(5.5)
	$1\sim 5$	652	166	70.1(5.2)	62.8(7.2)	45.8(5.9)	76.2(2.3)
USPS	$6 \sim 10$	542	147	64.3(4.7)	61.4(5.9)	41.7(5.3)	76.9(5.1)
USPS	even #	556	147	70.6(5.4)	63.7(7.2)	48.4(5.3)	75.7(2.7)
	odd #	542	166	63.1(4.3)	57.8(6.8)	37.8(5.7)	73.6(3.4)

5% t-test

Summary

We need continuous effort to achieve high classification accuracy with low labeling!

Accuracy

- UU classification
- PU classification
- PNU classification
- Complementary labels
- And more!

Semi-supervised

Unsupervised

Low

High

36

Low

Organization

- 1. Classification of classification
- 2. Classification from UU data
- 3. Classification from PU data
- 4. Classification from PNU data
- 5. Classification from complementary labels
- 6. Introduction RIKEN Center for AIP

RIKEN Center for AIP

- RIKEN founded Center for Advanced Intelligence Project (AIP) in 2016.
- Our missions:

- 1. Development of next-generation AI technology (understand deep learning and go beyond)
- Acceleration of scientific research (iPS cells, manufacturing, materials...)
- Contribution to solving socially critical problems (healthcare for super-aged society, disaster resilience, infrastructure management...)
- 4. Study of ethical, legal and social issues of AI.
- 5. Human resource development (academia & industry)

Organization of AIP Center

2017 June 1st

Over 200 researchers!

Various application domains (companies, universities, research institutes, etc.)

Goal-Oriented Technology Research Group: Abstract complex real-world problems into solvable forms (22 teams)

> Generic Technology Research Group: Develop fundamental theory and algorithms for abstracted problems (18 teams)

Artificial Intelligence in Society Research Group: Analyze the influence of AI spreading in society (8 teams) NEC/ Fujitsu/ Toshiba Collaboration Centers

International Partners

China

- Peking University
- Nanjing University
- Shanghai University
- Hong Kong University of Science and Technology

Korea

- KAIST
- Postech
- Artificial Intelligence Research Institute

Singapore

 National University of Singapore

US

- Toyota Technological Institute at Chicago
- University of Pennsylvania

Germany

- Berlin Big Data Center
- Technische Universitaet Darmstadt

UK

• Edinburgh Center for Robotics

Finland

Aalto University

More coming soon!

Computational Resources

With Dr. Bill Dally (NVIDIA SVP) (Feb. 27, 2017) https://blogs.nvidia.co.jp/2017/03/06/fujitsu-ai-supercomputer/

41

24 x NVIDIA DGX-1 (half-precision 4PFLOPS)

 The largest customer installation of DGX-1 systems in March 2017.

Ranked 4th in the Green500 List (June 2017)

• 10.602GFLOPS/W

Our Office in the Heart of Tokyo!

Directly connected to Nihonbashi Station.

Walking distance from Tokyo Station.

Visit us!

Open discussion space

