AI for Social Good

人工智能造福人类的那一面

Prof. Toby Walsh UNSW Sydney | Data61 | TU Berlin 澳大利亚新南威尔士大学教授、AAAI执行委员会成员

浙江省体育局

theguardian

Japanese company replaces office workers with artificial intelligence

Insurance firm Fukoku Mutual Life Insurance is making 34 employees redundant and replacing them with IBM's Watson Explorer AI

Centre on Impact of AI and Robotics

Exploring the future of AI and Robotics. Informing the debate. Helping to ensure beneficial outcomes for all.

OCCASIONAL PAPER SERIES

The AI Revolution

TOBY WALSH | PROFESSOR OF ARTIFICIAL INTELLIGENCE

Al for GOOD GLOBAL SUMMIT

n.**.*

Hosted at ITU in Geneva 7-9 June 2017

#AlforGood

Artificial Intelligence will change the way we shape our world.

Please donate food

23 million people in Australia2.2 million in poverty

11% children

25% pensioners

Over 100,000 homeless

FoodBank Local

Social startup

Winners of Microsoft Imagine Cup (Australia)

Finalists worldwide

Using technology

To reduce friction for FoodBank Australia (and other NGOs)

Collecting & distributing food

Fair division

To different charities

Pickup & delivery problem

Induced traveling salesperson problem

Online fair divison

Goods arrive one by one Agents see items and bid Only 0/1 utilities

Special features

- Online
- Repeated
- Combinatorial
- Storage
- Expiry dates Unequal entitlements

Like mechanism

Agents bid for any item with non-zero utility

Item allocated uniformly at random to any bidder

Balanced Like mechanism

Agents bid for any item with non-zero utility

Item allocated uniformly at random to bidder with fewest items

Normative properties

THM

Like is strategy proof.

THM

Balanced Like is strategy proof for 2 agents but not for 3.

Normative properties

THM

Both Like and Balanced Like are envy free ex ante

THM

Balanced Like is envy free up to one item ex post.

HUMAN ORGAN FOR TRANSPLANT

....

10

-

Deceased organ donation

In 1989, average organ was 32 years old.

In 2014, average organ was 46 years old.

Fair division of organs

Online Blood types Age groups Geographical regions

Blood types

Supply tracks population Demand different

Blood type B at disadvantage

No help that O are universal donors

Distribution of blood types

Organ & patient quality

Kidney Donor Profile Index (KDPI) age of donor, ...

Expected Post Transplant Survival (EPTS)

age of patient, ...

BOX mechanism

Lexicographical preferences

Blood/tissue type KDPI and EPTS Time on waiting list, ...

If KDPI>max then 0, exit If KDPI<=50 and EPTS<=25 then +4000000 If KDPI>EPTS-50 then +3000000, goto 2 If EPTS-50<=KDPI<=EPTS-25 then +200000, goto 2 If EPTS-75<=KDPI<=EPTS-50 then +100000, goto 2

. . .

BOX mechanism

Lexicographical preferences Blood/tissue type KDPI and EPTS Time on waiting list, ...

BOX mechanism

Lexicographical preferences

Blood/tissue type KDPI and EPTS Time on waiting list, ...

MIN mechanism

Amongst compatible blood/tissue type minimize |KDPI-EPTS|

tie break by time on waiting list, ...

This is two-sided matching with identical preferences

Patient wants organ with smallest KDPI

Organ wants patient with smallest EPTS

Stable organ matching

Two-sided matching with identical preferences Unique stable matching ith ranked patient with ith ranked organ

MIN = stable matching

Two-sided matching with identical preferences Unique stable matching *ith ranked patient with ith ranked organ*

But online so what is ranking?

MIN = stable matching

Two-sided matching with identical preferences Unique stable matching Matching with |EPTS-KDPI| minimized

Suppose each is population percentile (which they are!)

Formal model

At each time step some patients arrive OR some patients depart OR some organs arrive

Formal model

Organs are matched on arrival each organ has KDPI each patient has EPTS

Normative properties

THM MIN is organ monotonic

THM MIN is patient monotonic

Normative properties

THM

No mechanism satisfies participation

THM

Only strategy proof mechanisms are random

Waiting time

Total waiting time constant

MIN distributes this evenly

EP S

Waiting time

Total waiting time constant

BOX does not

From food to organ banks

Both *online* fair division problems Special features we can exploit (like identical preferences)

Normative analysis useful *Tradeoff between fairness & efficiency*

From food to organ banks

Join me (& others) in doing AI for social good

Computational sustainability Security games AI & Education AI & Health

For more on "AI for Social Good"

"A whirlwind tour through the history and the future of AI - and why it matters to all of us. A must-read." Solucitum Thran, Stanford/Google, Wheelty

For more on "AI for Social Good"

