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Technical Progress is 
Encouraging the Development 
of High-Stakes Applications 
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Self-Driving Cars 

Credit: The Verge 

Tesla AutoSteer 

Credit: Tesla Motors Credit: delphi.com 4 CCAI-2017 



Automated Surgical Assistants 
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Credit: Wikipedia  
CC BY-SA 3.0 
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AI Hedge Funds 
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AI Control of the Power Grid 
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Credit: DARPA 

Credit: EBM Netz AG 

CCAI-2017 



Autonomous Weapons 
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UK Brimstone Anti-Armor Weapon 

Credit: Duch.seb - Own work, CC BY-SA 3.0 



High-Stakes Applications Require 
Robust AI 
 Robustness to 
 Human user error 
 Cyberattack 
 Misspecified goals 
 Incorrect models 
 Unmodeled phenomena 
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Why Unmodeled Phenoma? 

 It is impossible to model everything 
 

 It is not desirable to model everything 
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It is impossible to model everything 
 Qualification Problem: 
 It is impossible to enumerate all of the 

preconditions for an action 
 

 Ramification Problem: 
 It is impossible to enumerate all of the 

implicit consequences of an action 
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It is important to not model everything 
 Fundamental theorem of machine 

learning 
error rate ∝

model complexity
sample size

 

 
 Corollary: 
 If sample size is small, the model should be 

simple 
 We must deliberately oversimplify our models! 
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Conclusion:  
 

An AI system must act 
without having a complete 

model of the world 
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Outline 
 The Need for Robust AI 
 High Stakes Applications 
 Need to Act in the face of Unknown Unknowns 

 Approaches toward Robust AI 
 Lessons from Biology 
 Robustness to Known Unknowns 
 Robustness to Unknown Unknowns 

 Concluding Remarks 
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Robustness Lessons from Biology 
 Evolution is not optimization 

 You can’t overfit if you don’t optimize 
 Competition against adversaries 

 “Survival of the Fittest” 
 Populations of diverse individuals 

 A “portfolio” strategy 
 Redundancy within individuals 

 diploidy/polyploidy = recessive alleles can be passed to future 
generations 

 alternative metabolic pathways 
 Dispersal 

 Search for healthier environments 

15 CCAI-2017 



Approaches to Robust AI 
 Robustness to Model Errors 

 Probabilistic Methods 
 Robust optimization 

 Regularize the model 
 Optimize a risk-sensitive objective 
 Employ robust inference algorithms 

 

 Robustness to Unmodeled Phenomena 
 Detect model weaknesses  

 (including anomaly detection) 
 Use a big model 
 Learn a causal model 
 Employ a portfolio of models 
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Idea 1: Decision Making under 
Uncertainty 

 Observe 𝑌𝑌 
 Choose 𝐴𝐴 to maximize 𝐸𝐸 𝑈𝑈 𝐴𝐴,𝑌𝑌  
 Uncertainty modeled as 𝑃𝑃(𝑈𝑈|𝐴𝐴,𝑌𝑌) 
 “Maximize Expected Utility” 
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𝑈𝑈  𝑌𝑌 

A 



Robustness to Downside Risk 
 𝐸𝐸 𝑈𝑈 𝑌𝑌,𝐴𝐴  ignores the 

distribution of 𝑃𝑃 𝑈𝑈 𝑌𝑌,𝐴𝐴  
 In this case 
𝐸𝐸 𝑈𝑈 𝑌𝑌, 𝑎𝑎1 = 𝐸𝐸 𝑈𝑈 𝑌𝑌, 𝑎𝑎2  

 But action 𝑎𝑎2 has 
larger down-side risk 
and larger variance 

 Risk-sensitive 
measures will prefer 
𝑎𝑎1 
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Idea 2: Robust Optimization 
 Many AI reasoning 

problems can be 
formulated as optimization 
problems 

 max
𝑥𝑥1,𝑥𝑥2

  𝐽𝐽(𝑥𝑥1, 𝑥𝑥2) 

 subject to 
 𝑎𝑎𝑥𝑥1 + 𝑏𝑏𝑥𝑥2 ≤ 𝑟𝑟 
 𝑐𝑐𝑥𝑥1 + 𝑑𝑑𝑥𝑥2 ≤ 𝑠𝑠 
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𝐽𝐽 𝑥𝑥1, 𝑥𝑥2  

𝑥𝑥1 

𝑥𝑥2 



Uncertainty in the constraints 
 max

𝑥𝑥1,𝑥𝑥2
  𝐽𝐽(𝑥𝑥1, 𝑥𝑥2) 

 subject to 
 𝑎𝑎𝑥𝑥1 + 𝑏𝑏𝑥𝑥2 ≤ 𝑟𝑟 
 𝑐𝑐𝑥𝑥1 + 𝑑𝑑𝑥𝑥2 ≤ 𝑠𝑠 

 
 Define uncertainty 

regions 
 𝑎𝑎 ∈ 𝑈𝑈𝑎𝑎 
 𝑏𝑏 ∈ 𝑈𝑈𝑏𝑏 
 … 
 𝑠𝑠 ∈ 𝑈𝑈𝑠𝑠 
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𝐽𝐽 𝑥𝑥1, 𝑥𝑥2  

𝑥𝑥1 

𝑥𝑥2 



Minimax against the uncertainty 
 max

𝑥𝑥1,𝑥𝑥2
min

𝑎𝑎,𝑏𝑏,𝑐𝑐,𝑑𝑑,𝑟𝑟,𝑠𝑠
𝐽𝐽(𝑥𝑥1, 𝑥𝑥2;𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑟𝑟, 𝑠𝑠) 

 subject to 
 𝑎𝑎𝑥𝑥1 + 𝑏𝑏𝑥𝑥2 ≤ 𝑟𝑟 
 𝑐𝑐𝑥𝑥1 + 𝑑𝑑𝑥𝑥2 ≤ 𝑠𝑠 
 𝑎𝑎 ∈ 𝑈𝑈𝑎𝑎 
 𝑏𝑏 ∈ 𝑈𝑈𝑏𝑏 
 … 
 𝑠𝑠 ∈ 𝑈𝑈𝑠𝑠 

 
 Problem: Solutions can be too conservative 

 
21 CCAI-2017 



Impose a Budget on the Adversary 
 max

𝑥𝑥1,𝑥𝑥2
min
𝛿𝛿𝑎𝑎,…,𝛿𝛿𝑠𝑠

𝐽𝐽(𝑥𝑥1, 𝑥𝑥2; 𝛿𝛿𝑎𝑎, … , 𝛿𝛿𝑠𝑠) 

 subject to 
 (𝑎𝑎 + 𝛿𝛿𝑎𝑎)𝑥𝑥1 + (𝑏𝑏 + 𝛿𝛿𝑏𝑏)𝑥𝑥2 ≤ 𝑟𝑟 + 𝛿𝛿𝑟𝑟  
 (𝑐𝑐 + 𝛿𝛿𝑐𝑐)𝑥𝑥1 + 𝑑𝑑 + 𝛿𝛿𝑑𝑑 𝑥𝑥2 ≤ 𝑠𝑠 + 𝛿𝛿𝑠𝑠  
 𝛿𝛿𝑎𝑎 ∈ 𝑈𝑈𝑎𝑎 
 𝛿𝛿𝑏𝑏 ∈ 𝑈𝑈𝑏𝑏 
 … 
 𝛿𝛿𝑠𝑠 ∈ 𝑈𝑈𝑠𝑠 
 ∑ 𝛿𝛿𝑖𝑖 ≤ 𝐵𝐵 

22 

Bertsimas, et al. 
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Existing AI Algorithms Implicitly 
Implement Robust Optimization  
 Given: 

 training examples (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) for an unknown function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) 
 a loss function 𝐿𝐿 𝑦𝑦�, 𝑦𝑦 : how serious it is to output 𝑦𝑦� when the 

right answer is 𝑦𝑦? 
 Find: 

 the model ℎ that minimizes 

�𝐿𝐿 ℎ 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖
𝑖𝑖

+ 𝜆𝜆 ℎ  

                   loss     + complexity penalty 
 

 
 CCAI-2017 23 



Regularization can be Equivalent to 
Robust Optimization 
 Xu, Caramanis & Mannor (2009) 
 Suppose an adversary can move each training data 

point 𝑥𝑥𝑖𝑖 by an amount 𝛿𝛿𝑖𝑖 
 Optimizing the linear support vector objective 

�𝐿𝐿(𝑦𝑦�𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑖𝑖

+ 𝜆𝜆 𝑤𝑤  

 is equivalent to minimaxing against this adversary who 
has a total budget 

� 𝛿𝛿𝑖𝑖
𝑖𝑖

= 𝜆𝜆 
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Idea 3: Optimize a Risk-Sensitive 
Objective 
 Setting: Markov Decision Process 

 
 

 
 
 
 

 
 States: 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+1, 𝑥𝑥𝑡𝑡+2 
 Actions: 𝑢𝑢𝑡𝑡,𝑢𝑢𝑡𝑡+1 
 Control policy 𝑢𝑢𝑡𝑡 = 𝜋𝜋(𝑥𝑥𝑡𝑡)  
 Rewards: 𝑟𝑟𝑡𝑡, 𝑟𝑟𝑡𝑡+1 
 Total reward ∑ 𝑟𝑟𝑡𝑡𝑡𝑡  
 Transitions: 𝑃𝑃 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡,𝑢𝑢𝑡𝑡  
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𝑥𝑥𝑡𝑡  𝑢𝑢𝑡𝑡  𝑥𝑥𝑡𝑡+1 𝑢𝑢𝑡𝑡+1 … 

𝑟𝑟𝑡𝑡   𝑟𝑟𝑡𝑡+1 

𝑥𝑥𝑡𝑡+2 
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Optimize Conditional Value at Risk 
 For any fixed policy 𝜋𝜋, the 

cumulative return 𝑉𝑉𝜋𝜋 = ∑ 𝑟𝑟𝑡𝑡𝑇𝑇
𝑡𝑡=1  

will have some distribution 
𝑃𝑃 𝑉𝑉𝜋𝜋  

 The Conditional Value at Risk 
at quantile 𝛼𝛼 is the expected 
return of the bottom 𝛼𝛼 
quantile 

 By changing 𝜋𝜋 we can change 
the distribution 𝑃𝑃 𝑉𝑉𝜋𝜋 , so we 
can try to push the 
probability to the right 

 “Minimize downside risks” 
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𝛼𝛼 = 0.1 

𝐶𝐶𝑉𝑉𝑎𝑎𝑅𝑅 = 3.06 
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𝐶𝐶𝑉𝑉𝑎𝑎𝑅𝑅 = 3.94 

Optimize Conditional Value at Risk 
 For any fixed policy 𝜋𝜋, the 

cumulative return 𝑉𝑉𝜋𝜋 = ∑ 𝑟𝑟𝑡𝑡𝑇𝑇
𝑡𝑡=1  

will have some distribution 
𝑃𝑃 𝑉𝑉𝜋𝜋  

 The Conditional Value at Risk 
at quantile 𝛼𝛼 is the expected 
return of the bottom 𝛼𝛼 
quantile 

 By changing 𝜋𝜋 we can change 
the distribution 𝑃𝑃 𝑉𝑉𝜋𝜋 , so we 
can try to push the 
probability to the right 

 “Minimize downside risks” 
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Optimizing CVaR gives robustness 
 Suppose that for each time 𝑡𝑡, an adversary can choose a 

vector 𝛿𝛿𝑡𝑡 and define a new probability distribution  
𝑃𝑃 𝑥𝑥𝑡𝑡+1 𝑥𝑥𝑡𝑡,𝑢𝑢𝑡𝑡 ⋅ 𝛿𝛿𝑡𝑡(𝑢𝑢𝑡𝑡) 

 
 Optimizing CVaR at quantile 𝛼𝛼 is equivalent to minimaxing 

against this adversary with a budget along each trajectory of 

�𝛿𝛿𝑡𝑡
𝑡𝑡

≤ 𝛼𝛼 

 Chow, Tamar, Mannor & Pavone (NIPS 2014) 
 

 Conclusion: Acting Conservatively Gives Robustness to 
Model Errors 
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Many Other Examples 
 Credal Bayesian Networks 
 Convex uncertainty sets over the probability 

distributions at nodes 
 Upper and lower probability models 
 (Cosman, 2000) 

 Robust Classification 
 (Antonucci & Zaffalon, 2007) 

 Robust Probabilistic Diagnosis (etc.) 
 (Chen, Choi, Darwiche, 2014, 2015) 
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Approaches to Robust AI 
 Robustness to Model Errors 
 Robust optimization 
 Regularize the model 
 Optimize a risk-sensitive objective 
 Employ robust inference algorithms 

 Robustness to Unmodeled Phenomena 
 Detect model weaknesses 
 Repair or expand the model 
 Learn a causal model 
 Employ a portfolio of models 
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Idea 4: Detect Surprises 
 An AI system should monitor itself and its 

environment to detect surprises that may 
signal an “unknown unknown” 

 When a surprise is detected 
 Ask the user to help 
 Execute a fallback safety policy 
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Monitor the Distribution of Predicted 
Classes 
 Supervised classification 
 On validation data, measure 

expected class frequencies 
 Detect departures from 

these on test data 

 Mismatch can indicate a 
change in the class 
distribution or a failure in 
the classifier 
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Letter frequencies in English 

Credit: Nandhp, Wikipedia 



Look for Violated Expectations 
 In search and 

reinforcement learning, we 
expect the estimated value 
to increase as we near the 
goal 

 

 When false, this signals 
potential change in world, 
new obstacle, etc. 
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Monitor Auxiliary Regularities 

 Hermansky (2013): Each phoneme 
has characteristic inter-arrival time 

 Monitor the inter-arrival times of 
recognized phonemes 

 Apply to detect and suppress noisy 
frequency bands 
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Monitor Auxiliary Tasks 
 ALVINN auto-steer 

system 
 Main task: Determine 

steering command 
 Auxiliary task: Predict 

input image 
 Perform both tasks 

with the same hidden 
layer information 
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Pomerleau, NIPS 1992 



Watch for Anomalies 
 Machine Learning 
 Training examples drawn from 𝑃𝑃𝑡𝑡𝑟𝑟𝑎𝑎𝑖𝑖𝑡𝑡(𝑥𝑥) 
 Classifier 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) is learned 
 Test examples from 𝑃𝑃𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡(𝑥𝑥) 
 If 𝑃𝑃𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡 = 𝑃𝑃𝑡𝑡𝑟𝑟𝑎𝑎𝑖𝑖𝑡𝑡 then with high probability 𝑓𝑓(𝑥𝑥) 

will be correct for test queries 
 

 What if 𝑃𝑃𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡 ≠ 𝑃𝑃𝑡𝑡𝑟𝑟𝑎𝑎𝑖𝑖𝑡𝑡? 
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Automated Counting of Freshwater 
Macroinvertebrates 
 Goal: Assess the health 

of freshwater streams 
 Method:  
 Collect specimens via 

kicknet 
 Photograph in the lab 
 Classify to genus and 

species 
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Open Category 
Object Recognition 

 Train on 29 classes of 
insects 

 Test set may contain 
additional species 
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Prediction with Anomaly Detection 

40 

Source: Dietterich & Fern, unpublished 
CCAI-2017 

𝑥𝑥 

Anomaly 
Detector 

𝐴𝐴 𝑥𝑥 > 𝜏𝜏? 

Classifier 𝑓𝑓 

Training 
Examples 

(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) no 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) 

yes reject 



Novel Class Detection via Anomaly 
Detection 

 Train a classifier on 
data from 2 classes 

 Test on data from 26 
classes 

 Black dot: Best 
previous method 
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Related Efforts 
 Open Category Classification  

 (Salakhutdinov, Tenenbaum, & Torralba, 2012) 
 (Da, Yu & Zhou, AAAI 2014) 
 (Bendale & Boult, CVPR 2015) 

 Change-Point Detection 
 (Page, 1955) 
 (Barry & Hartigan, 1993) 
 (Adams & MacKay, 2007) 

 Covariate Shift Correction 
 (Sugiyama, Krauledat & Müller, 2007) 
 (Quinonero-Candela, Sugiyama, Schwaighofer & Lawrence, 2009) 

 Domain Adaptation 
 (Blitzer, Dredze, Pereira, 2007) 
 (Daume & Marcu, 2006) 
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Idea 5: Use a Bigger Model 
The risk of Unknown Unknowns may be reduced 
if we model more aspects of the world 
 Knowledge Base Construction 

 Cyc (Lenat & Guha, 1990) 
 Information Extraction & Knowledge Base Population 

 Dankel (1980) 
 NELL (Mitchell, et al., AAAI 2015) 
 TAC-KBP (NIST) 
 Robust Logic (Valiant; AIJ 2001) 

 
 Risk: Every new component added to a model may introduce 

an error 
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Idea 6: Use Causal Models 
Causal relations are more likely to be 
robust  
 Require less data to learn 
 (Heckerman & Breese, IEEE SMC 1997) 

 Can be transported to novel situations  
 (Pearl & Bareinboim, AAAI 2011) 
 (Schoelkopf, et al., ICML 2012) 
 (Lee & Honavar, AAAI 2013) 
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Idea 7: Employ a Portfolio of Models 

 Ensemble machine learning methods 
regularly win Kaggle competitions 

 Portfolios for SAT solving 
 Portfolios for Question Answering and 

Search 
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Portfolio Methods in SAT & CSP 
 SATzilla: 

 
 
 
 

 Xu, Hoos, Hutter, Leyton-Brown (JAIR 2008) 
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SATzilla Results  
 HANDMADE problem set 
 Presolvers: 

 March_d104 (5 seconds) 
 SAPS (2 seconds) 
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Cumulative Distribution 

Xu, Hutter, Hoos, Leyton-Brown (JAI R2008) 
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IBM Watson / DeepQA 
 Combines >100 different techniques for  

 analyzing natural language 
 identifying sources 
 finding and generating hypotheses 
 finding and scoring evidence 
 merging and ranking hypotheses 
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Ferrucci, IBM
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Summary 

 Robustness to Model Errors 
 Probability models with risk-sensitive objectives 
 Optimize against an adversary 

 Regularize the model 
 Optimize a risk-sensitive objective 
 Employ robust inference algorithms 

 Robustness to Unmodeled Phenomena 
 Detect model weaknesses 
 Use a big model 
 Learn a causal model 
 Employ a portfolio of models 
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Outline 
 The Need for Robust AI 
 High Stakes Applications 
 Need to Act in the face of Unknown Unknowns 

 Approaches toward Robust AI 
 Lessons from Biology 
 Robustness to Known Unknowns 
 Robustness to Unknown Unknowns 

 Concluding Remarks 
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Concluding Remarks 
High Risk Emerging AI applications 
 … Require Robust AI Systems 
 
AI systems can’t model everything 

… AI needs to be robust to 
“unknown unknowns” 
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We have many good ideas 
 

We need many more! 
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Questions? 
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