
Capturing a Holistic View from
a Legacy Code Base

Background & Vision1

Tech Design & Case Studies3

Table of Contents

Architecture Overview2

Open Problems4

Background & Vision

Background Vision

• BlueMorpho Project

• Multi-language, multi-platform

• Code Analysis

• Business Rule Extraction

• Language Translation

• Architecture Transformation

• Software out sourcing business

• Legacy system maintenance

• System reengineering

• Wanted – improved productivity

Reengineering is about bridging 2 pyramids
with a holistic view

Architecture Overview

Architecture Overview

System Model

Analysis Algorithms

Query Navigate
System Model:

artifacts,
properties,
relations

User Interface:
reports, interactive

views

Code Analysis - Technical Design

• A 28K-line COBOL program
– Mapping hundreds of fields between 2 data structures
– Hard to maintain

 Analysis Results
 Complex call graph
 Many duplicate code
 Uninitialized fields

 Rewrite guide lines
 Field by field mapping, instead of conditional branches
 Map each field once, no overrides

Code Analysis - Case Study

Code Analysis - Sample views

• Slicing code
– Pattern Matching

• B.R. description
– Recommendation

BRE - Tech. Design

BRE – Case Study

• COBOL programs with many “edits”
• Different combination of “edits” for each member
• Our results

• Edits distribution / combination matrix
• Recommending description based on code similarity

System Model

Translation
Rules

Translation
Rules

Lang. Translation – Tech. Design

Lang. Translation – Case Study

• 100+ COBOL “View Calls”
– Data query programs
– EXEC SQL statements

 Results
 3 months rule correction / customization
 100% translated, zero compile error
 Selected 5 for validation

 Side by side output comparison with COBOL - pass
 Manual SIT test with web front end - pass

COBOL LOC of
COBOL

COPYBO
OK

LOC of
copybook

Generated
Java files

LOC of
Java

Compile
errors

Expansion
rate of files

Expansion
rate of LOC

111 206810 560 28674 2158 576763 0 321.61% 244.93%

 Approach
 Rule development driven by

language feature and errors

Transformation – Tech Design

Transformation – Case Study

• A sample Java EE application
• Apply several transformations to utilize “cloud services”

on AWS
– Replacing local database with RDS
– Use S3 for static files
– Utilize Cloud Watch for logs and notifications
– Etc.

• Result
– It works for the sample
– Consistent pattern matching and modification on multiple

places is not easy to construct

Summary

 A holistic view on legacy code base is critical in
• Maintenance

– What do these programs do, and how
– Where are the major problems

• Reengineering
– What logics to preserve and what not
– Is there a repeated pattern

• A holistic view is consist of
– A system model of code artifacts and

interconnections
– A business model of concepts and workflow

Open Problems

 Efficient Semantic Model Storage
• General enough (any objects + any relations; RDF preferred)
• Fast Query (Graph databases?)
• Incremental update on code

 Effective Machine Learning / NLP
• Business model from documents
• Annotation recommendation
• Natural language description (SMT?)

 Visualization
• Large model diagrams
• Interactive model navigation

• Dynamic Analysis
• Unify with static model

THANK YOU

	幻灯片编号 1
	 Table of Contents
	Background & Vision
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17

