
Relationship-Aware Code Search
for JavaScript Frameworks

Xuan Li
Institute of Software, School of Electronics Engineering and Computer Science

Peking University
2016.07.20

Motivation

• JavaScript frameworks are widely
used for developing web applications.
A recent survey[1] has shown that
73.3% of the top 10 million websites
use JavaScript frameworks, such as
jQuery, MooTools, Prototype, YUI,
and ExtJS. Meanwhile, among all
these frameworks, jQuery has a share
of 96.2%.

Usage Statistics and Market Share of JavaScript
Libraries for Websites, July 2016

[1]https://w3techs.com/technologies/overview/JavaScript_library/all

Motivation

When using these JavaScript frameworks, a large number of programmers
are often in great need of help. For example, 9.5% of questions in Stack
Overflow are tagged with “JavaScript”, which is the top 1 tag.

Motivation
• When using these JavaScript frameworks to implement a feature (e.g.,

functionality), programmers can benefit from existing code snippets that
implement the same or similar feature.

• General-purpose search engines (Google)
• Return unstructured information
• Unaware of the specificities of software

• Source-code-specific search engines (Ohloh, Krugle, Codase)
• Return code snippets or projects
• Treat code as text

• Recent research contributes new approaches that leverage code analysis and code
mining, e.g., PARSEWeb, MAPO, SNIFF, and SWCE, to take into account code
characteristics, such as API usage patterns and encoded code patterns. However,
none of these approaches consider characteristics of JavaScript code snippets or
search queries related to using a JavaScript framework API.

Motivation Example

1)In JavaScript, relationships between
method calls are complex, beyond
sequencing relationships among method
calls as commonly captured by existing
approaches.

2)JavaScript is mainly used for client-
side scripting in web browsers. Many
typical search queries for JavaScript
framework API usage describe the user
interaction, browser control,
asynchronous communication, and the
altering of a displayed document content.

Existing ways of code searching face various respective
limitations either in general or in particular for JavaScript.

Approach Overview
(1)JavaScript code snippet  method call relationship (MCR) graphs

(2)natural-language (NL) search query  action relationship (AR) graph

(3)RACS reduces code search to the problem of graph search: finding the similar MCR
graphs for a given AR graph.

Overview of RACS

Abstracting Code Snippets

relatively conservative clustering: if two code snippets are abstracted to the same
MCR graph, they fall into one cluster represented by the MCR graph.

Abstracting NL Query
• Preprocessing

• Action Identification
• use the Stanford Parser to generate the POS tags and parse

tree
• an action consists of Verb Phrase (VP), Noun Phrase (NP),

and optional Prepositional Phrase (PP).

• Relationship Identification
• Sequencing relationship: preposition (“before” and

“after”), aconjunction (“and” and “then”), or a punctuation
(comma, semicolon, and period)

• Condition relationship: “if”
• Callback relationship: (1) two actions’ descriptions are

connected by a connecting word being a conjunction or a
preposition indicating point-in-time (“when”, “after”, and
“if”), and also (2) the action happening first, should imply
an event or describe a completion status;

• Post-processing
• replaces some specific nouns (e.g., “image”, “div”

indicating element types) with more general ones (e.g.,
“element”) based on the word list for DOM elements in the
domain-specific dictionary

Show a busy image while the actual image is downloading, and when image is
downloaded, the busy image is removed and actual image is be shown there

演示者
演示文稿备注
transforms some special identifiers to plain English text(e.g.,“jQuery.Ajax”)
transforms abbreviations into full terms (e.g., “attr”�to “attribute”) based on a domain-specific dictionary.

Snippet Searching

• Deriving A-MCR graphs from the AR graph
• MCS measure of text semantic similarity

• Searching MCR graphs similar to A-MCR graphs
• Similarity of MCR graphs

• Selecting Code Snippets
• Two heuristics: matched keywords and code lengths

Evaluation
• Research questions

• RQ1: How effectively can RACS search JavaScript code snippets for a given NL search query?
• RQ2: Can RACS outperform a relationship-oblivious code search approach?

• Evaluation Setup
• JavaScript snippet base

• Benchmark queries
• 50 real-world representative jQuery related queries from Stack Overflow

• The details of our evaluation subjects and results: http://taoxie.cs.illinois.edu/racs/.

• Evaluation Metrics
• Best hit rank, i.e., the highest rank of the hit snippets for the query
• Success percentage at k, i.e., the success percentage among the set of queries considering only

the top k results returned by a search approach.

http://taoxie.cs.illinois.edu/racs/

Effectiveness of RACS

Effectiveness of RACS

Code Snippet Example

Top 1 ranked code snippet for queries 6 and 7.

Comparison with Relationship-oblivious Approach

• RACS: semantic similarity + relationship-aware ranking
ROCS: keyword matching + relationship-oblivious (i.e., support-based) ranking
ROCS+: semantic similarity + relationship-oblivious ranking
RACS−: keyword matching + relationship-aware ranking

Discussion

• With some modifications, our RACS approach can be applied to a wider scope.
For example, when used for another JavaScript framework, RACS needs to use
only the framework’s corresponding API documentation. For other programming
languages, we can define more relationships that best show these languages’
features.

• Our RACS approach attains the NL description for an API method from the API
documentation’s short description, which may not comprehensively capture the
API method’s semantics. The user may use a high-level description where one
action maps to multiple API methods. Automatic techniques of comment
generation may alleviate this problem. We can also attain more knowledge by
crowdsourcing beyond API documentation.

Conclusion
• Existing code search approaches are not effective in finding code snippets that use

JavaScript frameworks to implement a specific feature reflected by the given natural-
language (NL) search query. In this paper, we have presented a novel Relationship-Aware
Code Search (RACS) approach.

• RACS first collects a large number of code snippets that use some JavaScript frameworks
in advance, mines API usage patterns from the collected code snippets, and represents the
mined patterns with MCR graphs. Given an NL search query, RACS conducts NL
processing to automatically transform the query to an AR graph. In this way, RACS
reduces code search to the problem of graph search: searching the MCR graphs for a graph
similar to the given AR graph. During the graph search, RACS includes a technique based
on text semantic similarity to bridge the gap between NL actions in an AR graph and
framework API methods in an MCR graph.

• We have conducted two evaluations against popular real-world jQuery questions (posted on
Stack Overflow), based on 308,294 code snippets collected from over 81,540 files on the
Internet. The evaluation results show the effectiveness of RACS: the top 1 snippet
produced by RACS matches the target code snippet for 46% questions, compared to only
4% achieved by a relationship-oblivious approach (which shares key ideas with existing
state-of-the-art code search
approaches).

Q&A

	Relationship-Aware Code Search for JavaScript Frameworks
	Motivation
	Motivation
	Motivation
	Motivation Example
	Approach Overview
	Abstracting Code Snippets
	Abstracting NL Query
	Snippet Searching
	Evaluation
	Effectiveness of RACS
	Effectiveness of RACS
	Code Snippet Example
	Comparison with Relationship-oblivious Approach
	Discussion
	Conclusion
	幻灯片编号 17

