
汉斯.布瓦达

Hans Buwalda
LogiGear

hans@logigear.com
@hansbuwalda

Mr. Playback

How to make large and
complex testing projects

successful

Who is your speaker?

• Silicon Valley and Vietnam

• Testing and test automation services:
• consultancy, training
• test development and automation services
• "test integrated" development services

• Products:
• TestArchitect™, TestArchitect for Visual Studio™
• integrating test development with test management and automation

www.logigear.com

• Dutch guy, in California since 2001

• Background in math, computer science, management

• Focusing on keyword testing, agile testing, big testing

Hans Buwalda

LogiGear Corporation

hans@logigear.com
@hansbuwalda

Who is here?
• Industries, roles

• How good is your English? 

Key items in scalable automation
• Organization and design of the tests

• Process and cooperation (agile or
traditional)

• Project and production focus

• Technology

• Infrastructure

• Testability of the application under test

• Agreement, commitment

• Globalization, off-shoring

Existential Questions

• Why test?

• Why not test?

• Why automate tests?

• Why not automate tests?

Why test?
• People expect us to do

• Somebody wants us to

• Increases certainty and control
• Showing absence of problems ("Looking for good news")

• Finds faults, saving time, money, damage
• Showing presence of problems ("looking for bad news")

Why not test?
• It costs time and money

• You might find problems . . .

• We forgot to plan for it

• We need the resources for development

• It is difficult

• It's hard to manage

Why Automate Tests?
• It is more fun

• Can save time and money
• potentially improving time-to-market, quality-to-market

and control

• Can capture key domain and application knowledge

• Can speed up development life cycles

• Execution (执行) typically is more reliable
• a robot is not subjective, tired or moody

• Some tests can be done much better, or only, with
automation

Why not Automate?
• Can rule out the human elements

• promotes "mechanical" testing
• might not find "unexpected" problems

• More sensitive to good practices (作法)
• pitfalls are plentiful

• Needs technical expertise in the test team

• Tends to dominate the testing process
• at the cost of good test development

• Creates more software to manage
• can actually diminish scalability rather than helping it
• in particular changes in an application under test can have large, and hard to

predict, impact on the automated tests

"Almost 50% of Agile teams can’t
automate more than 29% of their tests, and
half of those can’t automate more than
10%.
Non-agile is even less."

 -- Forester 2016

What are we talking about today?

Action Based Testing

Using Actions - 用行动

4 actions, each with
an action keyword
and arguments

read from top
to bottom

fragment from a test with actions

• Write the test as actions, in a spreadsheet

• Each action has a name and arguments

• Automate the actions, not the tests

• Each action is automated only once, easy to maintain

"deposit" -- 存款
"balance" -- 结余

Organize actions in "Test Modules"
• A test module consists of an (1) initial part, (2) test cases and (3) a final part

• Focus is on readability and a clear scope

• Navigation details are avoided, unless they're meant to be tested

"rent car" means renting a car, like: 租一辆自驾车
"billing" is the American word to tell the customer how much to pay, like in: 帐单

Variables and expressions

• This test does not need an absolute number for the available
cars, just wants to see if a stock is updated

• As a convention we keep a value in a variable with ">>"

• The "#" indicates an expression (calculation like 表达式)

"quantity" --数量

Use existing actions to make new actions
• We use "enter", "click" and "check" to make a new action

• The new action is called "check balance"

• Arguments are used with "#"

use many times in tests:define in one place:

Test Module

Objectives

Initial - setup

Test cases

Final - cleanup
objective" -- 目的

High Level Test Design

Objectives

Test Module 1

Test Cases

Test Module 2 Test Module N

Actions

. . .

AUTOMATION

Objectives Objectives

interaction test business test

Overview Action Based Testing

define the "chapters"

create the "chapters"

create the "words"

make the words work

Test Cases Test Cases

Why Better Test Design?
• Quality of test

• many tests are often quite "mechanical" (机械) now, no surprises
• one to one related to specifications, user stories or requirements, which

often is ok, but lacks aggression
• no combinations, no unexpected situations, lame and boring
• such tests have a hard time finding (interesting) bugs

• Better automation
• when unneeded details are left out of tests, those details don't have to be

maintained
• limit the impact of system changes on tests, making such impact more

manageable
• bottom line: good test design makes automated testing more scalable

I have become to believe that successful automation is usually less of a
technical challenge as it is a test design challenge.

Example action implementation in Python

get table object, column number and column count
windowName = LIBRARY.NamedArgument("window")
tableName = LIBRARY.NamedArgument("table")
columnName = LIBRARY.NamedArgument("column")
table = ABT.OpenElement(windowName, tableName)
column = table.GetColumnIndex(columnName)
rowCount = table.GetRowCount()

check the sort order, row by row
previous = table.GetCellText(0, column)
for i in range(1, rowCount):
 current = table.GetCellText(i, column)
 if current < previous :
 LIBRARY.AdministerCheck("order", "sorted", "fails " + str(i+1), 0)
 return
 previous = current

LIBRARY.AdministerCheck("order", "sorted", "all rows in order", 1)

Script for an action check sort order, to verify whether the rows in a table are sorted:

find the table in the UI

if a value is smaller than before, fail the test

if all rows are ascending, pass the test

get arguments from the test line

def action_checkSortOrder():

Using the new action
• By keeping an action generic it can be applied for a variety of

situations

• Some examples of using "check sort order":

Cleaning up a garage (车库)

What's the secret (秘诀) . . .
• Get facilities to store and organize your content

• Select your stuff

• Decide where to put what
• assign and label the shelves

• Put it there

• If the organization is not sufficient anymore, add to it
or change it

• Business objects and business flows
• objects are like cars, invoices, locations, etc
• flows are like create, fulfill, pay and close an order

• Other tests
• functions and features, like premium calculation or PDF output
• administration, users, security, authorizations
• graphics
• technologies, protocols, ...
• customization, extensibility
• interoperability
• . . .

• Business versus interaction
• differentiate within business objects and all other categories
• interaction can be further differentiated into: values, UI, keyboard, etc
• also, for every category, look at negative tests, flows, aggressive tests, etc

Examples of considerations

"consideration" -- 考虑

Example Top Level
StructureProject create, update, delete/close

copy, move
categorize, enumerate, identify
convert, serialize, export/import, ...

UI, dialogs, forms, pages
input (validation, defaulting, dependencies)
flows (primary paths, alternate paths)
keyboard shortcuts, keyboard controls, ...

. . .

"Cars"

Lifecycles, data operations

Interaction

Functions and Features

Technologies, protocols, controls

Data (handling, quality, ETL, ...)

Security, authorization, admin

Graphics, multi-media, charts, ...

Interoperability

Customizing, extensibility

Business Flows

Concurrency, race conditions, ...

Business Objects

processes, transactions, end-to-end, day in the life,
combinations of flows, ...

calculations, analyses, PDF output, ...

"Customers"

. . .

Example: E-commerce site
• Articles
• Categories
• Customers
• Promotions
• Orders
• Invoices
• Payments
• Credit cards
• Staff members
• Countries
• . . .

"promotion" -- 促销

¥10
Off!!

Promotions -- business tests
• Promotion kinds

• percentage discounts
• fixed dollar discounts
• comprehensive promotions
• regional promotions
• volume discounts
• prompt payment discounts
• article based, comprehensive
• . . .

• Life cycles
• creation
• modification

• various properties
• before or after activation

• expiration
• cancellation

-
25%

买一送一

Promotions -- interaction tests
• Screen by screen

• Discount percentage/fixed
• does the amount field change

• Regional checkbox
• does the region list show up
• are the regions correct
• can the regions be selected/deselected

• Start, duration, end date
• are the date checks working
• can either duration or end date be entered

• Articles, categories
• can categories be selected, do they show up
• do the right articles show up, can they be selected

• . . .

What tests could look like
Business tests for business object "Promotions"

Interaction tests for business object "Promotions"

Behavior Driven Development (BDD)
• Uses natural language scenarios

• Tools like JBehave and Cucumber map these to code

• Structure is "Given-When-Then" (GWT)

• Example:

Given a customer previously bought a black sweater from me

And I currently have three black sweaters left in stock

When he returns the sweater for a refund

Then I should have four black sweaters in stock (source: Wikipedia)

?

"sweater" -- 毛线衣

BDD with action(example)

Equivalence, conversion
Given a customer previously bought a black sweater from me

And I currently have three black sweaters left in stock

When he returns the sweater for a refund

Then I should have four black sweaters in stock

?

Test Development

Approach per Test Module
• Plan the test module:

• when to develop: do we have enough information?
 UI tests are usually the last ones to be developed

• when to execute: make sure lower level stuff working first
 UI tests are usually the first ones to be executed

• Process:
• do an intake: understand what is needed and devise an approach
• analyze requirements, formulate "test objectives", create tests

• Identify stakeholders and their involvement:
• users, subject matter experts
• developers
• auditors

• Choose testing techniques if applicable:
• boundary analysis, decision tables, etc

• Try to follow an exploratory approach:
• see the test development as a "learning process", about the business domain, the

application structure, the interaction, etc
• talk about your tests, make them strong

Eye on the ball, Scope
• Always know the scope of the test module

• The scope should be clear and unambiguous

• The scope determines many things:
• what the test objectives are
• which test cases to expect
• what level of actions to use
• what the checks are about and which events should generate

a warning or error (if a “lower” functionality is wrong)

Example of a Test
is this a good test? is it good for automation?

BDD scenario . . .
Given User turns off Password required option for Drive Test
And User has logged in by Traffic Applicant account
And User is at the Assessments Take a Test page
And User clicks the Traffic Test link
And User clicks the Next button
And User clicks the Sheet radio button in Mode page if displayed
And User clicks the Start button
And User waits for test start
And User clicks the Stop Test button
When User clicks the Confirm Stop Test button
And User enters the correct applicant password
And User clicks the Confirm Stop Test button
Then The Test is Over should be displayed in the Message label
And the value of the Message label should be The test is over
And The Welcome to Traffic Testing page should be displayed

Use of "Anti-patterns"
• Informal way to classify typical test design problems

• Use with care, can come across offensive

• The point of view in the following list is automation: test design
choices that can be counter-productive to automation

• However, lack of good organization can also effect the quality of
manual tests

"Anti-patterns" (informal)
• Interaction Heavy – Not having many business tests

• Lame – No depth or variety, no testing techniques used

• Enter Enter Click Click – Test steps are too detailed

• No Life – Missing life cycle steps of business objects

• Clueless – No clear scope for the tests

• Cocktail – Interaction tests mixed with business tests

• Over-Checking – Checks not relevant for the scope

• Sneaky Checking – Checks hidden in actions

• Action Explosion – Many actions, hardly different

• Mystery Actions – Cryptic actions, unclear what they do

• Techno – Actions and tests that look like code
• often _NOts0EasY_2REad

• but great to impress non-technical people

• Sleepy – Use of hard sleeps, risking speed stability

• Black box – Lack of testability support in the AUT

• Varimania – More use of variables than the test actually needs

See my article:
Techwell Insights
September 17, 2015

Dealing with data
• Constructed data is easier to manage

• can use automation to generate it, and to enter it in the environment
• result of test analysis and design, reflecting "interesting" situations
• however, less "surprises": real life situations which were not foreseen

• Real-world data is challenging to organize
• make it a project, or task, in itself
• make absolutely sure to deal with privacy, security and legal aspects

appropriately. You may need to "scrub" the data

• Consider using automation to select data for a test
• set criteria ("need a male older than 50, married, living in Denver"), query for

matching cases, and select one randomly (if possible a different one each run)
• this approach will introduce variation and unexpectedness, making

automated tests stronger and more interesting

Designing Actions

Actions
• By product of test design

• As generic as possible

• Use a verb and a noun, and standardize the verbs and
the nouns

• verb: "check" or "verify" ?
• noun: "customer" or "client" ?
• so a new action will be "check customer" or "verify client" ?

• Organize and document

Low-level, high-level, mid-level actions

• "Low level": detailed interaction with the
UI (or API)

• examples: "click", "expand tree node", "select menu"

• "High level": a business domain operation or
check on the application under test

• hide the interaction
• examples: "enter customer", "rent car", "check
balance"

• "Mid level": common sequences at application
level

• usually to wrap a form or dialog
• for use in high level actions
• greatly enhance maintainability
• example: "enter address fields"

enter customer

enter address fields

enter select set
tip: do not click confirmation
buttons like "ok", "next",
"submit" etc in a mid-level action

Tip: Provide default values in actions
ACTION DEFINITION login

name default value
argument user tester
argument password testerpw

window control value
enter login window user name # user
enter login window password # password

window control
click login window login

user password
login tamaraj tj1234

text
check message Hello Tamara

login
date payee amount

make payment 1/1/12 Gas Co. 85.00

Use login action w/ arguments Use login default values

Using actions

Some notes on Bugs
Bugs found in the "Immediate Sphere", when the developer/team is still working
on the code (like in the same sprint)

Consider not logging as bugs, since that is much overhead.
Simply share a failed test module with the developer.

For each bug found late ask three questions, in this order:
1. was it a bug?
2. what was the root cause?
3. why wasn't it caught?
Consider keeping this information in the tracking system

Bugs found "Post Delivery", when the developer/team is working on something
else already

Good to keep track, manage, prioritize, assign, close, learn etc.
The later the bug is found the more important.

"If this is true I'm a Dutchman . . . "1 + 1 = 3

Varying Tests

Vary your tests?
• Automated tests have a tendency to be rigid, and

predictable

• Real-world situations are not necessarily predictable

• Whenever possible try to vary:
• with select other data cases that still fit the goal of tests
• with randomized behavior of the test

Generation and randomization techniques

• Model-based
• use models of the system under test to create tests
• see: Harry Robinson, www.model-based-testing.org, and Hans Buwalda, Better Software,

March 2003

• Data driven testing
• apply one test scenario to multiple data elements
• either coming from a file or produce by an automation

• "Monkey testing"
• use automation to generate random data or behavior
• "smart monkeys" will follow typical user behavior, most helpful in efficiency
• "dumb monkeys" are more purely random, may find more unexpected issues
• long simulations can expose bugs traditional tests won't find

• Extended Random Regression
• have a large database of tests
• randomly select and run them, for a very long time
• this will expose bugs otherwise hidden
• see Cem Kaner e.a.: "High Volume Test Automation", STARWEST 2004

Data driven testing with keywords

• The test lines will be repeated for each row in the data set

• The values represented by "car", "first" and "last" come from
the selected row of the data set

Combinations
• Input values

• determine equivalence classes of values for a variable or field
• for each class pick a value (or randomize)

• Options, settings

• Configurations
• operating systems, operating system versions and flavors

• Windows service packs, Linux distributions
• browsers, browser versions
• protocol stacks (IPv4, IPv6, USB, ...)
• processors
• DBMS's

• Combinations of all of the above

• Trying all combinations will spin out of control quickly

Pairwise versus exhaustive testing
• Group values of variables in pairs (or tuples with more than 2)

• Each pair (tuple) should occur in the test at least once
• maybe not in every run, but at least once before you assume "done"
• consider to go through combinations round-robin, for example pick a different

combination every time you run a build acceptance test

• Example, configurations
• operating system: Windows XP,

Apple OS X, Red Hat Enterprise Linux
• browser: Internet Explorer, Firefox, Chrome
• processor: Intel, AMD
• database: MySQL, Sybase, Oracle
• 72 combinations possible, to test each pair: 10 tests

• Example of tools:
• ACTS by NIST
• PICT by Microsoft,
• AllPairs by James Bach (Perl)
• for a longer list see: www.pairwise.org Source: PRACTICAL COMBINATORIAL TESTING, D. Richard Kuhn, Raghu N. Kacker, Yu Lei,

NIST Special Publication 800-142, October, 2010

Technical notes

Identifying controls

§ Identify windows and controls, and assign names to them

§ These names encapsulate the properties that the tool can use to identify
the windows and controls when executing the tests

Mapping an interface

• An interface mapping (common in test tools) will map windows and controls to names
• When the interface of an application changes, you only have to update this in one place
• The interface mapping is a key step in your automation success, allocate time to design

it well, in particular naming and choosing identifying properties

Hidden interface properties
• Use properties a human user can't see, but a test tool can

• This approach can lead to speedier and more stable automation
• less need for "spy" tools (which take a lot of time)
• less sensitive to changes in the system under test
• not sensitive to languages and localizations

• A "white-box" approach to UI's can also help operate on or verify aspect of
interface elements

• Examples:
• "id" attribute for HTML elements
• "name" field for Java controls
• "AccessibleName" or "Automation ID" properties in .Net controls (see below)

Using the hidden identifiers

• Instead of positions or language dependent labels, an internal property
"automation id" has been used

• The interface definition will be less dependent on modifications in the UI of
the application under test

• If the information can be agreed upon with the developers, for example in
an agile team, it can be entered (or pasted) manually and early on

• Passive timing
• wait a set amount of time
• in large scale testing, try to avoid passive timing altogether:

• if wait too short, test will be interrupted
• if wait too long, time is wasted

• Active timing
• wait for a measurable event
• usually the wait is up to a, generous, maximum time
• common example: wait for a window or control to appear (usually the test tool will do

this for you)

• Even if not obvious, find something to wait for...

• Involve developers if needed
• relatively easy in an agile team, but also in traditional projects, give this priority

• If using a waiting loop
• make sure to use a "sleep" function in each cycle that frees up the processor (giving

the AUT time to respond)
• wait for an end time, rather then a set amount of cycles

Active Timing

Things to wait for...
• Wait for a last control or elements to load

• developers can help knowing which one that is

• Non-UI criteria
• API function
• existence of a file

• Criteria added in development specifically for this purpose, like:
• "disabling" big slow controls (like lists or trees) until they're done loading
• API functions or UI window or control properties

• Use a "delta" approach:
• every wait cycle, test if there was a change; if no change, assume that the

loading time is over:
• examples of changes:

• the controls on a window
• count of items in a list
• size a file (like a log file)

• Should be a "must have" requirement
• first question in a development project: "how do we test this?"

• Design of the system(s) under test:
• components, tiers, services,

• Hidden identifying properties

• Hooks for timing

• White-box access to anything relevant:
• input data (ability to emulate)
• output data (what is underlying data being displayed)
• random generators (can I set a seed?)
• states (like in a game)
• objects displayed (like monsters in a game)

• Emulation features, like time-travel and fake locations

Testability, key items

Non-UI
• Examples

• web services (REST and SOAP)
• application programming interfaces (API’s)
• embedded software
• protocols
• files, batches
• databases, SQL
• command line interfaces (CLI’s)
• multi-media
• mobile devices

• Can be target of tests, and/or automation interfaces

• Non-UI automation can speed up functional tests that do
not address the UI

• but it can also complicate them

Alexander Graham Bell
 "Device Testing"

Testing in, or near, production
• In an agile and DevOps approach continuous deployment is becoming the

norm
• in particular for service based system (like web, apps, SaaS, but also client-server)
• logic in services is easier to manage and updated than distributed and variable clients

• In a DevOps approach tight cooperation between development, test and
deployment pays off

• automation testability
• testable system designs
• good test design remains a success factor
• tight integration in the build, deployment and production processes

• A/B testing can help test vary complex systems
• used not only for testing, also for trying out new features
• dividing the incoming traffic into an A and B flow (B is the new situation)
• automated tests can use the B flow
• to do this, have it well integrated in your system designs

• Continuous testing with random regression testing or monkey testing
*see also: Ken Johnston's chapter in the book of Dorothy Graham and Mark Fewster, and his keynote at StarWest 2012

A/B testing with a reverse proxy

• A/B testing means part of traffic is routed through a different server or
component (see if it works, and/or how users react)

• B could be a real-life user, a test user or also an automated test

• The strategy can be done at any component level

• Watch your test design, easy to drown in technical only

A

A

B

Reverse
Proxy

Users Servers

A

B

newcurrent

A
B

New stuff . . .
• Identify and address new or unusual testing and automation

challenges, before they might delay teams

Function

Test Execution
• Have an explicit approach for when and how to execute which

tests
• a good high level test design will help with this

• Execution can be selective or integral
• unit tests are typically executed selectively, often automatically based on

code changes in a system like SVN or TFS
• functional tests don't have as obvious relations with code files
• selective execution will be quicker and more efficient, integral execution may

catch more side-effect issues ("bonus bugs")
• consider "random regression" execution of tests

Unit Test Code user stories
work items

Unit Testing Functional Testing

Tests

Virtualization

虚拟化

Virtualization, a testers dream...
• In particular for functional testing

• Much easier to define and create needed configurations
• you basically just need storage
• managing this is your next challenge

• One stored configuration can be re-used over and over again

• The VM can always start "fresh", in particular with
• fresh base data (either server or client)
• specified state, for example to repeat a particular problematic automation situation

• Can take "snap shots" of situations, for analysis of problems

• Can use automation itself to select and start/stop suitable VM's
• for example using actions for this
• or letting an overnight or continuous build take care of this

Virtualization, bad dream?
• In many situations testers have no control over their VM's

• allocated by an IT department, or hiding in a cloud

• Capacity
• automated testing is a lot more demanding than human testing

• Virtual machine latency can add timing problems
• timing might be off if a VM is not running continuously
• we see this quite often derailing big test runs

• Management of images
• images can be (very) large, and difficult to store and move around,
• and their number can grow exponentially we configuration needs
• distinguish between managed configurations and sandboxes
• define ownership, organize it
• IT may be the one giving out (running) VM's, restricting your flexibility

happiness for a
test manager:
your own rack

Cloud

云端运算

Cloud models (summary)
• Infrastructure as a service (IaaS)

• renting (virtual) machines
• you maintain images with your stuff in it
• this is handy for testing:

• can maintain and use multiple configurations
• can get testing done quickly by temporarily allocating machines

• Platform as a service (PaaS)
• images are predefined (OS, DBMS, etc)
• advantages for testing are similar to IaaS

• Software as a service (SaaS)
• the application is web-based
• the cloud manages usage and load balancing
• testing strategy is different:

• less need for different configurations (on the server side)
• may include testing in production strategies like A/B testing

Amazon profit crushes

estimates as cloud-

service revenue soars

Alibaba Joins With SoftBank For Japanese Cloud Computing
Expansion

Cloud for testing
• Cloud can be target of testing

• usually SaaP applications
• typically a mix of UI and service testing
• from multiple locations (can be another use of the cloud)

• Cloud can be host of test execution
• the test client will be in the cloud, with a copy of the application, or with a browser
• can generate specific testing situations, or just speed up testing
• make sure machines are rented and returned efficiently

• Amazon is the market leader,
• Microsoft is pushing Azure very hard
• well known Chinese players are Ali Baba (Ali Yun) and Baidu (Baidu Yun)

• Public cloud providers offer API's, so your automation can
automatically allocate and release them

• be careful, software bugs can have costing consequences
• for example, consider having a second automation process to double-check cloud

machines have been released after a set time

Public cloud use needs organization
• You're spending money, therefore decide who can do what

(don't forget to limit you yourself too)

• Have a "test production planning" process

• Have a budget (预算)

• Have ownership (所有权)

• Use available policy features to limit usage in time and quantity

• Obtain and read production reporting, compare to plan and
budget

• Minimize the need (for example "last test round only")

• Have and try to use on-prem and hybrid alternatives

• Start small, learn

Organization, Process

Organization
• Much of the success is gained or lost in how you organize the process

• who owns which responsibility (in particular to say "no" to a release)
• separate, integrated teams, or both
• who does test design, who does automation
• what to outsource, what to keep in-house

• Write a plan of approach for the test development and automation
• scope, assumptions, risks, planning
• methods, best practices
• tools, technologies, architecture
• stake holders, including roles and processes for input and approvals
• team
• . . .

• Assemble the right resources
• testers, lead testers
• automation engineer(s)
• managers, diplomats, ...

Test design is a skill . . .
Automation is a skill . . .
Management is a skill . . .

. . . and those skills are different

Testing as a profession (专业)
• From the ISTQB report on World Wide Testing Practices:

• close to 80% of cases testers are in a separate organization
• in 84% of cases the test team does not report to Development

• Focus on tests, not development:
• what can be consequences of situations and events
• relieve developers

• The challenge (挑战) for the tester in the new era is to be a credible
professional (可信的专业)

• not a pseudo programmer (不是伪程序员)
• part of the team
• have knowledge and experience with testing techniques and principles
• know the domain

• Forcing a nontechnical tester to become a programmer may lose a good
tester and gain a poor programmer

• Forcing a good developer to become a tester may lose a good developer
and gain a poor tester

• a good developer who is working on an airplane control system is also not necessarily a
good airline pilot

Automation is a profession too
• Not the same as regular system development

• Navigating (导航) through other software efficiently (有效率),
dealing with control classes, obtaining information, timing, etc

• if you would compare developers to "creators", automation engineers might
be likened to "adventurers" (or "puzzlers") . . .

• The automation engineering role can also be a consultant:
• for test developers: help express tests efficiently
• for system developers: how to make a system more automation friendly
• important player in innovation in the automated testing

Team roles, examples
• Testing, test development

• test analysis, test creation
• reporting, result analysis and follow up, assessments

• Automation
• functional navigation, technical automation, interface mapping

• Test execution planning and management

• Environments and infrastructure (环境 and 基础设施)

• Management
• process, contents, practices, handling impediments
• diplomacy (搞好关系) testers often share the fate of defenders in football:

no glory, only blame

don't get locked
up in a role

What companies expect

source: ISTQB 2015 - 2016

ABT in Agile

Test Module
Definitions

Test Module Development

Interface Definition

Action Automation

Test Execution

Sprint ProductsProduct
Backlog

Test re-use

Automation re-use

product
owner team prod owner

& team

User stories
Documentation

Domain understanding

Acceptance Criteria
PO Questions

Situations
Relations

Agile life cycle

Test development

Main Level Test Modules

Interaction Test Modules

Cross over Test Modules

Using ABT in Sprints (1)
• Try to keep the testers in the same sprint as the rest of the team

• don't let automated tests lack behind
• note that in many environments tests and their automation are not highest

priority (优先)

• Agree on the approach (同意作法)
• is testability a requirement for the software?
• do we regard tests, or some of the tests, as products?

• can become part of the backlog
• would not only be up to the team which tests to create

• Just like for development, use discussions with the team and
product owners

• deepen understanding, for the whole team
• help define negative tests, and tests for unexpected situations (突发状况)
• tests can work as driver for development (TDD and ATDD)

Using ABT in Sprints (2)
• Create good starting conditions for a sprint:

• automation technology available (UI, non-UI, custom controls, graphics, ...)
• know how you will deal with data and environments
• understanding of subject matter, testing, automation, etc

• Do interface mapping by hand, using developer provided
identifications

• saves time by not having to use the viewer or other spy tools
• recording of actions (not tests) will go better

TIP

Finally

Takeaways

• Not all "big project" challenges are the same

• Think before you do. Best results come from planning
well, and combining effective concepts, tricks and tools

• Consider tests and automation as products that need
design

• Team work is a key for short term and long term success

• There are many options for infrastructure, but keep an
eye on economy, planning, and control

谢谢

