
汉斯.布瓦达

Hans Buwalda
LogiGear

hans@logigear.com
@hansbuwalda

Mr. Playback

Test Design for Better
Test Automation

Who is your speaker?

• Silicon Valley and Vietnam

• Testing and test automation services:
• consultancy, training
• test development and automation services
• "test integrated" development services

• Products:
• TestArchitect™, TestArchitect for Visual Studio™
• integrating test development with test management and automation

www.logigear.com

• Dutch guy, in California since 2001

• Background in math, computer science, management

• Focusing on keyword testing, agile testing, big testing

Hans Buwalda

LogiGear Corporation

hans@logigear.com
@hansbuwalda

From The Netherlands (Holland)

Zwolle

Zwolle (兹沃勒)

We like to ride bikes

America Netherlands

Often hard to keep up for QA

QA QA QA

Sprint Sprint Sprint Sprint

PO PO PO PO

Dev Dev Dev Dev

SCRUM PROJECT

Cooperation in a team is important for QA. If that suffers QA will fall even further behind...

Tests and their scalability

Don't just automate manual testing

Don't just automate manual testing

Don't just automate manual testing

Good automated testing is not the same as automating good manual testing. . .

Example Scripting (Selenium)
WebElement element = driver.findElement(By.name(name));

element.sendKeys("mystery magic");
element.submit();

(new WebDriverWait(driver, 10)).until(
new ExpectedCondition<Boolean>() {

public Boolean apply(WebDriver d) {
return d.getTitle()
.toLowerCase().startsWith("mystery");

}
}

);

System.out.println(driver.getTitle());

???

Using Actions

4 actions, each with
an action keyword
and arguments

read from top
to bottom

fragment from a test with actions

• Write the test as actions, in a spreadsheet

• Each action has a name and arguments

• Automate the actions, not the tests

• Each action is automated only once, easy to maintain

Variables and expressions with
keywords

• Use ">>" to assign a value to a variable

• Use "#" to start an expression

Use existing actions to make new actions
• We use "enter", "click" and "check" to make a new action

• The new action is called "check balance"

• Arguments are used with "#"

use many times in tests:define in one place:

3 ways to implement actions

• With action definitions
• use existing actions to create new ones
• see the previous slide

• Low level (UI, etc) actions can be built-in in the tool
• like "click", "select menu item", etc
• TestArchitect has 381 of such built-in actions

• Can program in a programming language
• like C#, Python or Java

Example action implementation in Python

get table object, column number and column count
windowName = LIBRARY.NamedArgument("window")
tableName = LIBRARY.NamedArgument("table")
columnName = LIBRARY.NamedArgument("column")
table = ABT.OpenElement(windowName, tableName)
column = table.GetColumnIndex(columnName)
rowCount = table.GetRowCount()

check the sort order, row by row
previous = table.GetCellText(0, column)
for i in range(1, rowCount):
 current = table.GetCellText(i, column)
 if current < previous :
 LIBRARY.AdministerCheck("order", "sorted", "fails " + str(i+1), 0)
 return
 previous = current

LIBRARY.AdministerCheck("order", "sorted", "all rows in order", 1)

Script for an action check sort order, to verify whether the rows in a table are sorted:

find the table in the UI

if a value is smaller than before, fail the test

if all rows are ascending, pass the test

get arguments from the test line

def action_checkSortOrder():

Using the new action
• By keeping an action generic it can be applied for a variety of

situations

• Some examples of using "check sort order":

Behavior Driven Development (BDD)
• Uses natural language scenarios

• Tools like JBehave and Cucumber map these to code

• Structure is "Given-When-Then" (GWT)

• Example:

Given a customer previously bought a black sweater from me

And I currently have three black sweaters left in stock

When he returns the sweater for a refund

Then I should have four black sweaters in stock (source: Wikipedia)

?

"sweater" -- 毛线衣

BDD with actions (example 1)

BDD with Actions (example 2)
Given a customer previously bought a black sweater from me

And I currently have three black sweaters left in stock

When he returns the sweater for a refund

Then I should have four black sweaters in stock

?

Risks of keyword approaches

• Keywords are not a magic solution to all problems

• With many tests and keywords maintenance can still be hard

The method I will show you today:

"Action Based Testing"

Successful automation is not as

much a technical challenge, as it

is a test design challenge.

My statement on test automation . . .

Issues are not always obvious...

Downton Abbey (唐顿庄园)

Why Better Test Design?

Quality
will be better

Automation
will be easier

Example of a Test
is this a good test? is it good for automation?

BDD scenario . . .
Given User turns off Password required option for Drive Test
And User has logged in by Traffic Applicant account
And User is at the Assessments Take a Test page
And User clicks the Traffic Test link
And User clicks the Next button
And User clicks the Sheet radio button in Mode page if displayed
And User clicks the Start button
And User waits for test start
And User clicks the Stop Test button
When User clicks the Confirm Stop Test button
And User enters the correct applicant password
And User clicks the Confirm Stop Test button
Then The Test is Over should be displayed in the Message label
And the value of the Message label should be The test is over
And The Welcome to Traffic Testing page should be displayed

The Test Automation Design Paradox

Test design is important for automation

but . . .

many testers are not engineers

悖论

Test Module

Objectives

Initial - setup

Test cases

Final - cleanup

(1) Early in the project: identify the test modules

these become the closet
with labeled (empty)
shelves that the tests will
be stored in later

tester, engineers and
product owners can do
this together

(2) During the project: fit the tests into the modules
only use actions and
checks that fit the
scope of the module

avoid unnecessary
details, hide them in
the actions

but don't hide too much, info
that is needed to understand
a test should be visible

Price Calculations
Login Tests

Address Entry

High Level Test Design

Objectives

Test Module 1

Test Cases

Test Module 2 Test Module N

Actions

. . .

AUTOMATION

Objectives Objectives

interaction test business test

Overview Action Based Testing

define the "chapters"

create the "chapters"

create the "words"

make the words work

Test Cases Test Cases

Breakdown Criteria
• Common Criteria

• Functionality (customers, finances, management information, UI, ...)

• Architecture of the system under test (client, server, protocol, sub systems,
components, modules, ...)

• Kind of test (navigation flow, negative tests, response time, ...)

• Additional Criteria
• Stakeholders (like "Accounting", "Compliance", "HR", ...)

• Complexity of the test (put complex tests in separate modules)

• Execution aspects (special hardware, multi-station, ...)

• Project planning (availability of information, timelines, sprints, ...)

• Risks involved (extra test modules for high risk areas)

• Ambition level (smoke test, regression, aggressive, …)

For more information, and examples, see the articles on my website: www.happytester.com

Eye on the ball, Scope

• Always know the scope of the test module

• The scope should be clear and unambiguous

• The scope determines many things:
• what the test objectives are
• which test cases to expect
• what level of actions to use
• what the checks are about and which events should generate a

warning or error (if a “lower” functionality is wrong)

Use the right level actions
Hide details if they don't matter (don't fit the scope of the test):

. . . show details if they do matter. This line for example is unclear:

???

however . . .

Tip: have default values for arguments
ACTION DEFINITION login

name default value
argument user tester
argument password testerpw

window control value
enter login window user name # user
enter login window password # password

window control
click login window login

user password
login tamaraj tj1234

text
check message Hello Tamara

login
date payee amount

make payment 1/1/12 Gas Co. 85.00

Sometimes explicit values are needed: Usually default values are good enough:

Non-UI
• Examples

• web services (REST and SOAP)
• application programming interfaces (API’s)
• embedded software
• protocols
• files, batches
• databases, SQL
• command line interfaces (CLI’s)
• multi-media

• Can be target of tests, and/or automation interfaces

• Non-UI automation can speed up functional tests that do
not address the UI

• but it can also complicate them

Multiple System Access

System Under Test

Automation

API
access

protocol
access

UI
access

database
access

Test Modules, driving either one
or multiple interfaces

Example approach: using an agent

Software Under Test

Agent
ABT
Automation

Interface
Info

Host Device

Android

Games, VR
Car Diagnostic

SystemsMobile Devices
Point of Sale

Terminals

do as much as possible here do as little as possible here

Multimedia: The "check picture"
Approach
• Approach applicable for pictures like graphics or

icons

• The tester will add a line "check picture", that
includes a "question" as one of the arguments

• While the test is executed TA keeps the recorded
pictures

• After execution the pictures are shown to a
manual testing for approval

• Once approved unchanged same pictures won't
be presented to the manual tester again in future
runs

• Relative picture checks are part of test module

• They depict images that are specific for that module

• Example a chart based on calculations. In another
module the chart will typically be different (based on a
different calculation)

• Absolute picture checks refer to pictures that occur in
multiple tests, based on conditions, but always the
same image

• Their names start with "/"

• Typical use: icons or pictograms:
• as a tester you usually don't care about the design of an icon, but

whether it appears when expected

Absolute and relative picture checks

Data driven testing

• The test lines will be repeated for each row in the data set

• The values represented by "car", "first" and "last" come from the selected
row of the data set

• The data set can be static (in a table) or dynamic (generated at run time)

"Lead Deputy" Testing

• For "multi station" testing, when multiple machines have to participate
in a test in real-time

• For example if a supervisor needs to approve a withdrawal in a bank
teller system

• Can be "sync" and "parallel" (with a rendezvous point)

"bank teller"

"supervisor"

"bank teller"

Takeaways

• Test design is a major contributor to automation success, often
more than technical expertise

• Domain language approaches like Action Based Testing and
BDD allow for efficient communication and driving of
automation

• Test modules can help organize the tests, and focus their scopes

• Focusing tests, checks and actions on a clear and differentiated
scope will make for better tests, but also better automation

Thank you, my email is: hans@logigear.com

