
Kubernetes and
Google Container Engine

Harry Wang
Google Inc.

演示者
演示文稿备注
There has been a lot of talk in the past year or two about containers, and how it allows you to spend less of your time programming or administering the underlying infrastructure.

https://pixabay.com/en/container-container-ship-port-1638068/
CC0 Public Domain
Free for commercial use
No attribution required

Containers make
operations easier

Enabled Google
to grow our fleet over
10x faster than we
grew our ops team

Number of running
containers

Core Ops Team

演示者
演示文稿备注
We strongly believe that running your applications in containers is the right choice for you as developers and for your business. We say this from experience: Google has been using containers to run production services for +12 years. We leveraged containers and containers orchestration to grow our fleet over 10x faster than we grew our ops team.

What is Kubernetes

• Container centric infrastructure

• Inspired by Google’s internal systems

and experience managing containers

• Runs Anywhere

• Open sourced in 2014

• Created CNCF to host Kubernetes and an

ecosystem of cloud-native

infrastructure

Container orchestration

演示者
演示文稿备注
Application containers are an increasingly popular tool to accelerate application development and deployment.
But containers alone often aren’t sufficient to manage containers in production at scale. You need a container orchestration system, like Kubernetes.
I like to think of it as container-centric infrastructure for deploying and managing applications.
Kubernetes was created by Google, drawing on experience with Borg, the system that runs search and gmail.
But designed to run anywhere.
We open sourced Kubernetes in June 2014
And created the Cloud Native Computing Foundation to host Kubernetes and to foster an ecosystem of cloud-native infrastructure.

Diagram source:
https://github.com/kubernetes/kubernetes/blob/gh-pages/img/desktop/graphs/graph-01.svg

Runs in many environments, including

“bare metal” and “your laptop”

The API and the implementation
are 100% open

The whole system is modular
and replaceable

Platform flexibility

OpenStack

AWS

1,500+

Contributors

43,000+
Commits

4,000+

External
Projects Based on

Kubernetes

200+

Meetups Around the
World

Kubernetes community

演示者
演示文稿备注
We move fast with you. Kubernetes community is now the most vibrant project and community on github. Users are running production workloads with kubernetes everywhere. The pace of innovation of this open source technology is mind blowing. We, along with over one thousand contributors, keep investing in making it easier for you to deploy and manage your applications, on a reliable and secured platform. Having different contributors / environments raises the quality bar because it has to work well everywhere.

Contributor
s

and users

Kubernetes community

演示者
演示文稿备注
And I think that we, together with the rest of the community, has been very successful in building this strong and vibrant community.
Kubernetes has been widely adopted by many, both vendors and users, and we see all of them contribute back to the community.

Fast, scalable, open

Fast: Developer productivity

● Minutes from commit to

prod

● Release 20－50X / day

Scalable: efficient scale out

● Fastest app to 1bn usd

● Black Friday demand

Open: use anywhere

● 200 Walmart warehouses on

VMware

● Hybrid and multi cloud

演示者
演示文稿备注
When a technology starts becoming common place, you know it’s going to change the way people work, and its benefits will become the new standard for business.
Some of the benefits of Kubernetes are: Developer productivity
Secondly, efficient scales. Examples of blackfriday at HomeDepot. Now becomes expected way to do business.
Last but not least its open - user can move between cloud providers or on-prem.

Key Concepts in Kubernetes

A small group of tightly coupled containers

& volumes, composed together

The atom of Kubernetes

Shared lifecycle and fate

Shared networking - a shared “real” IP,

containers see each other as localhost

Pods

演示者
演示文稿备注
When we say “pod” think of a tiny little VM that has one job.
A pod is a small set of tightly coupled containers that run together.
Every pod gets its own IP address, just like a VM.
This is where your app runs.

Every pod has a real IP address

This is different from the out of the box

model Docker offers

● No machine private IPs

● No port mapping

Pod IPs are accessible from other pods,

regardless of which VM they are on

Linux “network namespaces” (aka

“netns”) and virtual interfaces

演示者
演示文稿备注
Every pod gets an IP address. Linux gives us some great tools for creating multiple virtual NICs and assigning them IPs.
Every pod you run gets a private network stack, called a “network namespace” or “netns”, and each netns gets an IP address.

VM

Network namespaces

root netns

eth0

pod1 netns pod2 netns

eth0 eth0

vethx
x

vethy
y

cbr0

演示者
演示文稿备注
This is the same concepts and tech that have been around for decades.
Standard Linux tools and concepts still apply.

Node

Machine where containers run

Transparent for cluster users

On the radar of cluster administrator

演示者
演示文稿备注
Node is a machine where containers run. When using Kubernetes you shouldn’t care about it, since Kubernetes manages your containers rather than machines.

Deployment

The way to deploy an

application

Creates and updates instance of

the application

Self-healing mechanism

...

演示者
演示文稿备注
Deployment is a Kubernetes components which helps you manage your application:
Straightforward deployment
Advanced updates, including rolling update
self-healing mechanisms

The service abstraction

A service is a group of endpoints (usually pods)

Services provide a stable VIP

VIP automatically routes to backend pods

● Implementations can vary

● We will examine the default implementation

The set of pods “behind” a service can change

Clients only need the VIP, which doesn’t change

演示者
演示文稿备注
There are other types of services the default and most common is with a VIP

Service

What you submit is simple

● Other fields will be

defaulted or assigned

The ‘selector’ field

chooses which pods to balance

across

kind: Service

apiVersion: v1

metadata:

 name: store be

spec:

 selector:

 app: store

 role: be

 ports:

 - name: http

 port: 80

Endpoints

selector:

 app: store

 role: be

app: store
role: be

10.11.8.67

app: store
role: be

10.11.5.3

app: store
role: be

10.11.0.9

app: db
role: be

10.7.1.18

app: store
role: fe

10.11.8.67

app: db
role: be

10.4.1.11

演示者
演示文稿备注
There are other types of services the default and most common is with a VIP

Automatically add (or remove) pods as needed

• Based on CPU utilization (for now)

• Custom metrics in Alpha

● Efficiency now, capacity when you need it

● Operates within user defined min/max bounds

● Set it and forget it

Horizontal pod autoscaling

...

Stats

演示者
演示文稿备注
Now imagine that you are running this web service and suddenly it starts to get popular. You'll find that you want to scale it horizontally. This is very easy to do with Kubernetes — a single command invocation. But an as application developer you don't want to spend all of your time tuning the number of web server replicas. Instead, you can enable horizontal pod auto scaling to add or remove pods as needed.

Pod to service

root
netns

eth0

ctr1
netns

eth0

vethx
x

cbr0

iptable
s

src: pod1
dst: svc1
dst: pod99

pod1 netns

eth0

演示者
演示文稿备注
The root netns has a bunch of iptables rules that recognize “hey this is for a service” and choose a random backend for you.
iptables stores the translation in a table (conntrack) which is used when the packet returns to undo what we just did
We’re simplifying here - it actually tracks the whole 5-tuple for the connection.
It redirects the packet to the backend IP, and all the same mechanisms described for pod-to-pod traffic work the same.

kubectl

Kubernetes command line

client tool

Controls Kubernetes cluster

manager

＄kubectl

kubectl controls the Kubernetes cluster manager.

Find more information at https://github.com/kubernetes/kubernetes.

Basic Commands (Beginner):

 create Create a resource by filename or stdin

 expose Take a replication controller, ...

 run Run a particular image on the cluster

 set Set specific features on objects

Basic Commands (Intermediate):

 get Display one or many resources

 explain Documentation of resources

 edit Edit a resource on the server

 delete Delete resources by filenames, ...

演示者
演示文稿备注
Kubectl is a command line client tool which allows you to perform all operations on Kubernetes clusters like managing your pods.

演示者
演示文稿备注
And metrics view, which is an area where Kubernetes dashboard is better than kubectl.

Google Container Engine (GKE)

Google Container Engine:
• Pure upstream Kubernetes
• Operational excellence
• Monitoring, logging, IAM
• Network and load balancer

integration

Images by Connie Zhou

Original launch target Estimated worst case Actual traffic

Cloud Datastore Transactions Per Second

50X
Actual
traffic

5X
Worst case
estimate

1X
Target
traffic

Add VMs when needed

● Based on unschedulable pods

● New VMs self-register with API server

Remove VMs when not needed

● e.g. CPU usage too low

...

Cluster autoscaling

演示者
演示文稿备注
In the same way that Kubernetes makes it easy to add new pod replicas, Google Container Engine makes it simple to add or remove VMs from your cluster. The cluster autoscaler is currently in beta but we've gotten a lot of good feedback from users and have made some significant performance improvements that will be coming with the 1.6 release of Kubernetes. And when your web server starts to lose popularity, the autoscaler will scale down your cluster, removing unnecessary VMs and reducing your costs.

GKE networking

Pods must be reachable across VMs.

Kubernetes doesn’t care HOW, but this is a

requirement

● L2, L3, or overlay

GKE VMs are created as “routers”

● --can-ip-forward
● Disable anti-spoof protection for this VM

Add one GCP static route for each VM

● gcloud compute routes create vm2 --destination-
range=x.y.z.0/24 --next-hop-instance=vm2

The GCP network does the rest.

演示者
演示文稿备注
There are other ways to implement it, but this is the crux of how it works on GCP.
No encapsulation or overlays needed. No proxies or translations.
It’s just simple IP routing.

Services are a group of endpoints (usually pods)
that provide a stable virtual IP (VIP)

The set of pods behind the VIP can change but
clients only need the VIP, which doesn't change

External services are exposed as an IP and port

On Google Container Engine this is done using
a Google Cloud Network Load Balancer

Load balancing (L4)

Client

External
IP

演示者
演示文稿备注
Google Container Engine offers two types of load balancing. The first type is appropriate for applications that need to work at the protocol level, directly handling TCP connections or UDP packets. This type of load balancing is implemented using Kubernetes services.

Many apps use HTTP/HTTPS (e.g., games, social, retail)

Ingress maps incoming traffic to backend services
● by HTTP host headers
● by HTTP URL paths

On Google Container Engine this is done using
a Google Cloud HTTP(S) Load Balancer

Load balancing (L7)

Clien
t

URL Map

演示者
演示文稿备注
The second type of load balancer is a layer 7 load balancer which is used for HTTP or HTTPS services. This type of load balancing is configured using Ingress objects.

GCP Project

VM1 VM1 VM1 VM1

Receiving external-to-service traffic

Net LB

VM2 VM3

src: client
dst: LB

Choose a VM

pod1 pod2 pod3

GCP Project

VM1

Receiving external-to-service traffic

Net LB

VM2 VM3

iptable
s

src: client
dst: LB

Choose a pod

pod1 pod2 pod3

GCP Project

VM1

Receiving external-to-service traffic

Net LB

VM2 VM3

iptable
s

src: client
dst: LB
dst: pod2

NAT

pod1 pod2 pod3

Thank you!

	Kubernetes and
Google Container Engine
	幻灯片编号 2
	Containers make operations easier
	What is Kubernetes
	Container orchestration
	Platform flexibility
	Kubernetes community
	Kubernetes community
	Fast, scalable, open
	Key Concepts in Kubernetes
	Pods

	Every pod has a real IP address

	Network namespaces

	Node
	Deployment
	The service abstraction

	Service
	Endpoints

	Horizontal pod autoscaling
	Pod to service

	kubectl
	幻灯片编号 22
	Google Container Engine (GKE)
	幻灯片编号 24
	Cloud Datastore Transactions Per Second
	Cluster autoscaling
	GKE networking

	Load balancing (L4)
	Load balancing (L7)
	Receiving external-to-service traffic

	Receiving external-to-service traffic

	Receiving external-to-service traffic

	Thank you!

