
Palo分析型数据库在百度内的应用实践

 马如悦 2015.11

内容

•  背景介绍
•  使用场景@案例介绍
•  整体架构与使用介绍
•  关键技术
•  对外开放

背景介绍

Online Data Serving

Bigdata Lambda Architecture

New data
 stream

B
atch Layer

(H
adoop, S

park)

R
ealtim

e Layer
(D

stream
, TM

)

Stream
 processing

All
data

Precompute
views

Realtime
view

Batch
view

Batch
view

Serving Layer

Query

Online Data Serving

l  Simple Query Engine

l  KV Storage Engine

l  Analysis / OLAP Query Engine

l  Table Storage Engine

l  Search Query Engine

l  Document Storage Engine

Palo

•  Palo名字来由 PALO <-> OLAP

•  Online Analytical Processing

–  Analytical Processing vs. Transactional Processing

–  Online vs. Offline (Interactive vs. Batch)
•  A MPP-based Interactive Data Analysis SQL DB
•  面向百TB ~ PB级别，结构化数据，毫秒/秒级分析
•  自研第三代产品：Doris -> OlapEngine -> Palo
•  120+产品线使用，500+台机器，单一业务最大百TB

OLAP vs. OLTP

OLTP OLAP

面向应用 日常交易处理 明细查询，分析决策

访问模式 简单小事务，操作少量数据 复杂聚合查询，查询大量数据

数据 当前最新数据 历史数据

数据规模 GB TB ~ PB

数据更新 实时更新 批量更新

数据组织 满足3NF 反范式，星型模型

Palo定位

低成本 线性扩展 支持云化部署

高可用 高查询性能

99.9999 % Uptime 10W QPS/ 100GB/s

100~200节点 / 1000 TB 1/10 ~1/100 Cost

高加载性能

10 TB / Hour

OLAP – 在线报表

OLAP – 多维分析

OLAP – 商业产品

产品 简介 技术特点 收购情况
Netezza 2000年在美国成立

Netezza TwinFin
ü  软硬一体机
ü  采用FPGA数据过滤代替索引

2010年9月20日，IBM出资17.8亿美
元收购

Greenplum 2003年在美国成立
Greenplum Database

ü  行存 + 列存
ü  Shared-Nothing集群

2010年7月6日，EMC出资3亿美元收
购

Vertica 2005年在美国成立
Vertica Analytic Database

ü  列存
ü  Shared-Nothing集群

2011年2月，HP出资3.5亿美元收购

Aster Data 2005年在美国成立
nCluster

ü  SQL-MapReduce
ü  Shared-Nothing集群

2011年7月6日，Teradata出资2.63亿
美元收购

ParAccel 2005年在美国成立
PADB

ü  列存 + 自适应压缩
ü  Shared-Nothing集群

2013年Actian出资1.5亿美元收购，
Redshift宣称使用ParAccel

OLAP – 开源社区

Interactive Analysis
• HiveHhUt��}g\ärÆ�è

Dremel: Interactive Analysis of Web-Scale Datasets (Google 2010)
Tenzing : A SQL Implementation On The MapReduce Framework (Google 2011)
PowerDrill: Processing a Trillion Cells per Mouse Click (Google 2012)

�

Mesa: Geo-Replicated, Near Real-Time, Scalable Data
Warehousing

Ashish Gupta, Fan Yang, Jason Govig, Adam Kirsch, Kelvin Chan
Kevin Lai, Shuo Wu, Sandeep Govind Dhoot, Abhilash Rajesh Kumar, Ankur Agiwal
Sanjay Bhansali, Mingsheng Hong, Jamie Cameron, Masood Siddiqi, David Jones

Jeff Shute, Andrey Gubarev, Shivakumar Venkataraman, Divyakant Agrawal
Google, Inc.

ABSTRACT
Mesa is a highly scalable analytic data warehousing system
that stores critical measurement data related to Google’s
Internet advertising business. Mesa is designed to satisfy
a complex and challenging set of user and systems require-
ments, including near real-time data ingestion and querya-
bility, as well as high availability, reliability, fault tolerance,
and scalability for large data and query volumes. Specifi-
cally, Mesa handles petabytes of data, processes millions of
row updates per second, and serves billions of queries that
fetch trillions of rows per day. Mesa is geo-replicated across
multiple datacenters and provides consistent and repeatable
query answers at low latency, even when an entire datacen-
ter fails. This paper presents the Mesa system and reports
the performance and scale that it achieves.

1. INTRODUCTION
Google runs an extensive advertising platform across mul-

tiple channels that serves billions of advertisements (or ads)
every day to users all over the globe. Detailed information
associated with each served ad, such as the targeting cri-
teria, number of impressions and clicks, etc., are recorded
and processed in real time. This data is used extensively at
Google for different use cases, including reporting, internal
auditing, analysis, billing, and forecasting. Advertisers gain
fine-grained insights into their advertising campaign perfor-
mance by interacting with a sophisticated front-end service
that issues online and on-demand queries to the underly-
ing data store. Google’s internal ad serving platforms use
this data in real time to determine budgeting and previ-
ously served ad performance to enhance present and future
ad serving relevancy. As the Google ad platform continues
to expand and as internal and external customers request
greater visibility into their advertising campaigns, the de-
mand for more detailed and fine-grained information leads
to tremendous growth in the data size. The scale and busi-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 12
Copyright 2014 VLDB Endowment 2150-8097/14/08.

ness critical nature of this data result in unique technical and
operational challenges for processing, storing, and querying.
The requirements for such a data store are:

Atomic Updates. A single user action may lead to multiple
updates at the relational data level, affecting thousands of
consistent views, defined over a set of metrics (e.g., clicks
and cost) across a set of dimensions (e.g., advertiser and
country). It must not be possible to query the system in a
state where only some of the updates have been applied.

Consistency and Correctness. For business and legal rea-
sons, this system must return consistent and correct data.
We require strong consistency and repeatable query results
even if a query involves multiple datacenters.

Availability. The system must not have any single point of
failure. There can be no downtime in the event of planned or
unplanned maintenance or failures, including outages that
affect an entire datacenter or a geographical region.

Near Real-Time Update Throughput. The system must
support continuous updates, both new rows and incremental
updates to existing rows, with the update volume on the
order of millions of rows updated per second. These updates
should be available for querying consistently across different
views and datacenters within minutes.

Query Performance. The system must support latency-
sensitive users serving live customer reports with very low
latency requirements and batch extraction users requiring
very high throughput. Overall, the system must support
point queries with 99th percentile latency in the hundreds
of milliseconds and overall query throughput of trillions of
rows fetched per day.

Scalability. The system must be able to scale with the
growth in data size and query volume. For example, it must
support trillions of rows and petabytes of data. The update
and query performance must hold even as these parameters
grow significantly.

Online Data and Metadata Transformation. In order
to support new feature launches or change the granularity
of existing data, clients often require transformation of the
data schema or modifications to existing data values. These
changes must not interfere with the normal query and up-
date operations.

1259

为什么要做Palo

•  大家想要一套系统
–  报表
–  分析
–  有时当个离线数据仓库也行

•  可能用到的系统
–  Mesa
–  Dremel
–  SparkSQL+HDFS
–  Impala+HDFS
–  Impala+Hbase
–  传统MPP数据系统：teradata, vertica, greenplum

•  问题
–  维护多个系统，多份数据
–  功能不完备
–  成本高

•  解决方案
–  Palo

适用场景和案例介绍

适用场景

•  数据的统计分析统计
•  报表

– MySQL存结果数据
– 跑批处理，发送邮件

•  多维分析
– Hadoop + Hive

业务推广

• 120+产品线

• 500+台

• 糯米、钱包、凤巢、移动等多个部门的BI报表
和分析平台

案例分析 – 百度统计

•  百度统计
– 为网站站长提供流量分析，网站分析，受众分

析等多种分析服务
– 450w网站, 每天查询量1500w，峰值

QPS1400+
– 300+表, 日导入数据量1TB+, 5分钟导入
– 完成从Doris3->Palo迁移,机器数220+->58+，

查询平均延时60+ ms-> 30ms

整体架构与使用介绍

Palo整体架构

Palo整体架构

MySQL	Tools	
(MySQL	Networking)	

Palo-FE	
(Leader,	Java)

Palo-FE	
(Follower,	Java)

Palo-FE	
(Follower,	Java)

Palo-FE	
(Observer,	Java)

Palo-BE	
(C++)

Palo-BE	
(C++)

Palo-BE	
(C++)

Palo-BE	
(C++)

Palo使用

Palo整体架构

关键技术

容错

Palo整体架构

•  元数据
–  Memory + Checkpoint + Journal
–  类Raft协议实现，高可靠&高可用性

•  数据
–  多副本
–  自动修复

Metadata In MEM

Checkpoint.10 LOG.11

LOG.12

LOG.13

Leader

Checkpoint.13

LOG.14

Followers Observers

Log Replicating

Metadata In MEM

Checkpoint.10 LOG.11

LOG.12

LOG.13
Checkpoint.13

LOG.14

Metadata In MEM

Checkpoint.10 LOG.11

LOG.12

LOG.13
Checkpoint.13

LOG.14

MySQL Networking Protocol

MySQL	Tools	
(MySQL	Networking)	

Palo-FE	
(Leader,	Java)

Palo-FE	
(Follower,	

Java)

Palo-FE	
(Follower,	

Java)

Palo-FE	
(Observer,	Java)

Palo-BE	
(C++)

Palo-BE	
(C++)

Palo-BE	
(C++)

Palo-BE	
(C++)

MySQL Networking Protocol

MySQL Client

Frontend

MySQL Proxy

ü  轻量级客户端

ü  与上层应用兼容容易

ü  学习曲线平缓，方便用户上手使用

ü  利用MySQL相关工具，比如MySQL Proxy

MySQL Protocol Layer

Tableau兼容性

R语言兼容性

MPP

数据模型 - 1

Time Id Country Clicks Cost
2013/12/31 1 US 10 32
2014/01/01 2 UK 40 20
2014/01/01 2 US 150 80

•  Key列，Value列
•  Key列全局有序

–  查询快速定位
•  全Key全局唯一

–  相同Key的行，其Value列合并
(SUM,MIN,MAX,REPLACE)

数据模型 - 2

Time Id Country Clicks Cost
2013/12/31 1 US 10 32
2014/01/01 2 UK 40 20
2014/01/01 2 US 150 80

Time Id Country Clicks Cost
2014/01/01 1 US 5 3
2014/01/01 2 UK 60 30
2014/01/01 2 US 50 20

Base

Delta

+

数据模型 - 3

Time Id Country Clicks Cost
2013/12/31 1 US 10 32
2014/01/01 1 US +5 +3
2014/01/01 2 UK 40+60 20+30
2014/01/01 2 US 150+50 80+20

Time Id Country Clicks Cost
2014/01/01 1 US 5 3
2014/01/01 2 UK 60 30
2014/01/01 2 US 50 20

New
Base

Delta

数据模型 - 4

引自Google Mesa Paper

To enforce update atomicity, Mesa uses a multi-versioned
approach. Mesa applies updates in order by version num-
ber, ensuring atomicity by always incorporating an update
entirely before moving on to the next update. Users can
never see any effects from a partially incorporated update.
The strict ordering of updates has additional applications

beyond atomicity. Indeed, the aggregation functions in the
Mesa schema may be non-commutative, such as in the stan-
dard key-value store use case where a (key, value) update
completely overwrites any previous value for the key. More
subtly, the ordering constraint allows Mesa to support use
cases where an incorrect fact is represented by an inverse
action. In particular, Google uses online fraud detection
to determine whether ad clicks are legitimate. Fraudulent
clicks are offset by negative facts. For example, there could
be an update version 2 following the updates in Figure 2 that
contains negative clicks and costs, corresponding to marking
previously processed ad clicks as illegitimate. By enforcing
strict ordering of updates, Mesa ensures that a negative fact
can never be incorporated before its positive counterpart.

2.3 Versioned Data Management
Versioned data plays a crucial role in both update and

query processing in Mesa. However, it presents multiple
challenges. First, given the aggregatable nature of ads statis-
tics, storing each version independently is very expensive
from the storage perspective. The aggregated data can typ-
ically be much smaller. Second, going over all the versions
and aggregating them at query time is also very expen-
sive and increases the query latency. Third, näıve pre-
aggregation of all versions on every update can be pro-
hibitively expensive.
To handle these challenges, Mesa pre-aggregates certain

versioned data and stores it using deltas, each of which con-
sists of a set of rows (with no repeated keys) and a delta
version (or, more simply, a version), represented by [V1, V2],
where V1 and V2 are update version numbers and V1 ≤ V2.
We refer to deltas by their versions when the meaning is
clear. The rows in a delta [V1, V2] correspond to the set
of keys that appeared in updates with version numbers be-
tween V1 and V2 (inclusively). The value for each such key is
the aggregation of its values in those updates. Updates are
incorporated into Mesa as singleton deltas (or, more simply,
singletons). The delta version [V1, V2] for a singleton corre-
sponding to an update with version number n is denoted by
setting V1 = V2 = n.
A delta [V1, V2] and another delta [V2 + 1, V3] can be ag-

gregated to produce the delta [V1, V3], simply by merging
row keys and aggregating values accordingly. (As discussed
in Section 2.4, the rows in a delta are sorted by key, and
therefore two deltas can be merged in linear time.) The cor-
rectness of this computation follows from associativity of the
aggregation function F . Notably, correctness does not de-
pend on commutativity of F , as whenever Mesa aggregates
two values for a given key, the delta versions are always of
the form [V1, V2] and [V2 + 1, V3], and the aggregation is
performed in the increasing order of versions.
Mesa allows users to query at a particular version for only

a limited time period (e.g., 24 hours). This implies that ver-
sions that are older than this time period can be aggregated
into a base delta (or, more simply, a base) with version [0, B]
for some base version B ≥ 0, and after that any other deltas
[V1, V2] with 0 ≤ V1 ≤ V2 ≤ B can be deleted. This process

Figure 3: A two level delta compaction policy

is called base compaction, and Mesa performs it concurrently
and asynchronously with respect to other operations (e.g.,
incorporating updates and answering queries).

Note that for compaction purposes, the time associated
with an update version is the time that version was gener-
ated, which is independent of any time series information
that may be present in the data. For example, for the Mesa
tables in Figure 1, the data associated with 2014/01/01 is
never removed. However, Mesa may reject a query to the
particular depicted version after some time. The date in the
data is just another attribute and is opaque to Mesa.

With base compaction, to answer a query for version num-
ber n, we could aggregate the base delta [0, B] with all sin-
gleton deltas [B + 1, B + 1], [B + 2, B + 2], . . . , [n, n], and
then return the requested rows. Even though we run base
expansion frequently (e.g., every day), the number of sin-
gletons can still easily approach hundreds (or even a thou-
sand), especially for update intensive tables. In order to
support more efficient query processing, Mesa maintains a
set of cumulative deltas D of the form [U, V] with B <
U < V through a process called cumulative compaction.
These deltas can be used to find a spanning set of deltas
{[0, B], [B + 1, V1], [V1 + 1, V2], . . . , [Vk + 1, n]} for a version
n that requires significantly less aggregation than simply
using the singletons. Of course, there is a storage and pro-
cessing cost associated with the cumulative deltas, but that
cost is amortized over all operations (particularly queries)
that are able to use those deltas instead of singletons.

The delta compaction policy determines the set of deltas
maintained by Mesa at any point in time. Its primary pur-
pose is to balance the processing that must be done for a
query, the latency with which an update can be incorporated
into a Mesa delta, and the processing and storage costs asso-
ciated with generating and maintaining deltas. More specifi-
cally, the delta policy determines: (i) what deltas (excluding
the singleton) must be generated prior to allowing an update
version to be queried (synchronously inside the update path,
slowing down updates at the expense of faster queries), (ii)
what deltas should be generated asynchronously outside of
the update path, and (iii) when a delta can be deleted.

An example of delta compaction policy is the two level
policy illustrated in Figure 3. Under this example policy,
at any point in time there is a base delta [0, B], cumulative
deltas with versions [B + 1, B + 10], [B + 1, B + 20], [B +
1, B+30], . . ., and singleton deltas for every version greater
than B. Generation of the cumulative [B+1, B+10x] begins
asynchronously as soon as a singleton with version B+10x is
incorporated. A new base delta [0, B′] is computed approx-
imately every day, but the new base cannot be used until
the corresponding cumulative deltas relative to B′ are gen-

1262

列式存储
The execution engine compiles different code for the JDBC connection protocol and for ODBC and psql
(libq) connection protocols, so two clients using different protocols will each incur the first-time cost of
compiling the code. Other clients that use the same protocol, however, will benefit from sharing the cached
code.

Columnar storage
Columnar storage for database tables is an important factor in optimizing analytic query performance
because it drastically reduces the overall disk I/O requirements and reduces the amount of data you need
to load from disk.

The following series of illustrations describe how columnar data storage implements efficiencies and how
that translates into efficiencies when retrieving data into memory.

This first illustration shows how records from database tables are typically stored into disk blocks by row.

In a typical relational database table, each row contains field values for a single record. In row-wise
database storage, data blocks store values sequentially for each consecutive column making up the entire
row. If block size is smaller than the size of a record, storage for an entire record may take more than
one block. If block size is larger than the size of a record, storage for an entire record may take less than
one block, resulting in an inefficient use of disk space. In online transaction processing (OLTP) applications,
most transactions involve frequently reading and writing all of the values for entire records, typically one
record or a small number of records at a time. As a result, row-wise storage is optimal for OLTP databases.

The next illustration shows how with columnar storage, the values for each column are stored sequentially
into disk blocks.

Using columnar storage, each data block stores values of a single column for multiple rows. As records
enter the system, Amazon Redshift transparently converts the data to columnar storage for each of the
columns.

In this simplified example, using columnar storage, each data block holds column field values for as many
as three times as many records as row-based storage. This means that reading the same number of
column field values for the same number of records requires a third of the I/O operations compared to

API Version 2012-12-01
8

Amazon Redshift Database Developer Guide
Columnar storageThe execution engine compiles different code for the JDBC connection protocol and for ODBC and psql

(libq) connection protocols, so two clients using different protocols will each incur the first-time cost of
compiling the code. Other clients that use the same protocol, however, will benefit from sharing the cached
code.

Columnar storage
Columnar storage for database tables is an important factor in optimizing analytic query performance
because it drastically reduces the overall disk I/O requirements and reduces the amount of data you need
to load from disk.

The following series of illustrations describe how columnar data storage implements efficiencies and how
that translates into efficiencies when retrieving data into memory.

This first illustration shows how records from database tables are typically stored into disk blocks by row.

In a typical relational database table, each row contains field values for a single record. In row-wise
database storage, data blocks store values sequentially for each consecutive column making up the entire
row. If block size is smaller than the size of a record, storage for an entire record may take more than
one block. If block size is larger than the size of a record, storage for an entire record may take less than
one block, resulting in an inefficient use of disk space. In online transaction processing (OLTP) applications,
most transactions involve frequently reading and writing all of the values for entire records, typically one
record or a small number of records at a time. As a result, row-wise storage is optimal for OLTP databases.

The next illustration shows how with columnar storage, the values for each column are stored sequentially
into disk blocks.

Using columnar storage, each data block stores values of a single column for multiple rows. As records
enter the system, Amazon Redshift transparently converts the data to columnar storage for each of the
columns.

In this simplified example, using columnar storage, each data block holds column field values for as many
as three times as many records as row-based storage. This means that reading the same number of
column field values for the same number of records requires a third of the I/O operations compared to

API Version 2012-12-01
8

Amazon Redshift Database Developer Guide
Columnar storage

ü  数据是按行存储的

ü  没有索引的查询使用大量I/O

ü  建立索引和物化视图需要花费大量时间和资源

ü  面对查询的需求，数据库必须被大量膨胀才能

ü  满足性能要求

行存储

ü  数据按列存储，每一列单独存放

ü  只访问查询涉及的列，大量降低I/O

ü  数据类型一致，方便压缩

ü  数据包建索引，数据即索引

列存储

Rollup Table

时间 Id 省份 pv
2014.01.01 1 北京 10

2014.01.01 2 天津 30

2014.01.02 1 北京 20

2014.01.02 2 北京 40

Id 时间 省份 pv
1 2014.01.01 北京 10

1 2014.01.02 北京 20

2 2014.01.01 天津 30

2 2014.01.02 北京 40

Id pv
1 30

2 70

重新排序

聚合表

两层分区与分级存储

•  两层分区
–  方便新旧数据分离，使用不同的存储介质（新数据SSD，历史数据SATA）
–  减少了大量历史数据不必要的重复BE/CE，节省了大量的IO和CPU开销
–  简化了表的扩容，shard调整

•  分级存储
–  用户可以指定数据放到SSD上或者SATA盘上，也支持根据TTL将冷数据从SSD迁

移到SATA上，高效利用SSD提高查询性能

向量化执行

•  行式执行引擎问题

–  每行一次函数调用，打断CPU流水，不利于分支预测

–  指令和数据cache miss

–  编译器不友好，不利于循环展开，SIMD

•  设计思想

–  单条处理到批量处理

–  行式处理转化为列式处理

•  效果

–  star-schema测试整体提升3~4倍

Mini-Batch数据导入

•  补充原来基于Hadoop的Bulk-Batch导入
•  Mini-Batch Data Loading
•  使用使用HTTP即可导入，减少客户端对其它组件的依赖
•  实现了多导入的事务提交

资源隔离

•  问题
–  多用户影响
–  单用户多任务影响

•  解决

–  线程级cgroup

–  两级资源组织

–  基于用户名的方式:
username#high

对外开放

Palo公有云化

•  Palo云化

– AWS redshift

– on-demand provisioning

– 百度公有云的需求

•  Roadmap

– 15.09: OLAP Engine Alpha

– 15.12: OLAP Engine Beta

– 16.06: OLAP Engine GA

•  当前正在使用客户

– 20+外部客户试用

云化Palo实现鸟瞰

Admin Cluster Load Data Use DB

(Palo 2)

Thanks & QA

