Drones and Computer Vision

Yan Ke (柯严), Ph.D.

Co-Founder and CTO, Clobotics

June 24, 2017

About Me

B.S. Computer Science, 2001

M.S. Electrical and Computer Engineering, 2002

Ph.D. Computer Vision, 2008

Principal Development Manager, 2016

Bing Search

Web Index Selection

Knowledge Graph

Question Answering

Overview

- Industry overview
- Computer vision on drones
- Computer vision on collected data

ETH Zurich / Ascending Technologies

Drone Imagery

Drones in the News

"Drones have near-misses with airplanes over three times a day (US)"

http://news.sky.com/story/drone-and-plane-in-near-miss-close-to-heathrow-10379797
http://nypost.com/2016/03/29/drones-have-near-misses-with-airplanes-over-three-times-a-day/
http://www.irishnews.com/magazine/technology/2017/04/03/news/the-number-of-drone-near-misses-at-heathrow-has-more-than-tripled-in-a-year-986572/

How big is the industry?

\$100 billion by 2020

Goldman Sachs

THE OPPORTUNITY AHEAD

Between now and 2020, we forecast a \$100 billion market opportunity for drones—helped by growing demand from the commercial and civil government sectors.

Source: Goldman Sachs Research

Cost of Data Acquisition

Hundreds of Millions

Satellites

\$50M - \$400M to build and launch Millions per year to operate

Hundreds of Thousands

Planes

\$300K+ to buy \$100K per year to hire a pilot

Thousands

Drones

\$1000 - \$10,000 to buy Autonomous

Computer Vision on Drones

Safe and Autonomous

- Goals
 - Obstacle Avoidance
 - Visual Navigation (No GPS)
 - Tracking
 - Precise Landing
- Requirements
 - · Real time
 - · Low weight
 - · Low power

Drones Are Not Toys

Obstacle Avoidance

DJI Obstacle Avoidance

ZED Stereo Camera Output

SLAM - Simultaneous Localization and Mapping

University of Michigan

Visual Odometry

University of Zurich – Robotics and Perception Group

Tracking – TLD, CMT

Fig. 1. Given a single bounding box defining the object location and extent in the initial frame (LEFT), our system tracks, learns and detects the object in real-time. The red dot indicates that the object is not visible.

http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html

http://kahlan.eps.surrey.ac.uk/featurespace/tld/Publications/2011 tpami

https://www.gnebehay.com/tld/

https://www.gnebehay.com/cmt/

DJI Active Track

Underlying Technologies

- Image Stitching
- 3D Reconstruction
- Multispectral Analysis
- Object Detection

Steve Wernke / Vanderbilt University

Agribotics

Pro Aerial Services

Image Stitching

- Many overlapping high resolution photos
- Image registration (with keypoints)
- Calibration
- Blending
- Georeference

Point, Length, Area Measurements

球互联网技术大会 Million Till Among Commission

全球互联网技术大会 制制

全球互联网络

3D Reconstruction

https://en.wikipedia.org/wiki/3D_reconstruction_from_multiple_images

Paul Bourke

3D Models and Measurements

Stockpile Volume Estimation

Precision Hawk

Multispectral Analysis

Micasense Sequoia

NDVI

Object Detection – Deep Learning

NVIDIA TX2

NVIDIA DGX-1

Kespry

Drone+Cloud landscape

	١	
	,	

	Founded	Rev	Total Funding	Focus Area
Skycatch	2013	\$1.8M	\$47.8M	Construction
Pix4D	2011	\$1.6M	\$2.4M	Surveying, Agriculture, Construction
DroneDeploy	2013	\$2.3M	\$31M	Agriculture, Construction, Mining
Kespry	2013	\$5M	\$28.4M	Construction
Precisionhawk	2011	\$3.9M	\$30M	Agriculture
Airware	2011	\$5M	\$68.7M	Drone OS
3DR	2009	\$32M	\$126M	Construction, mining, surveying
TraceAir	2015	<\$1M	Seed	Construction
Redbird	2012			Construction / acquired by Airware
Agribotix	2015	N/A	\$250K	Agriculture

Clobotics

^{*} All funding data from owler.com, except for Matternet which is from crunchbase.com

Construction

Expected progress: 4D BIM with Weekly Work Planning details

Week 10

Week 17

Actual construction progress: 4D Reality Models

Week 10

Week 17

Jointly registered 4D BIM and 4D Reality Models

- As-built Documentation
- Progress Monitoring
- Quality Control
- Safety Monitoring
- Contractor Hand-Over

Windfarm

Roof Inspection

Solar Panel Inspection

Animal Conservation

Counting animals

Power Lines Inspection

Telecom Industry

Finding Interference

Landfill Fill Rate Estimation

The problem we are solving

Enterprises are innovating with drones to increase productivity. However, new problems are introduced:

Purchase drones

Find drone operators

Train existing staff

Find data scientists

Clobotics help customers collect, process, analyze data using enterprise-ready drones.

- Founder team, and half of company have 10+ years of working experience.
- 1/3 of engineering org are PhDs.

Core Vision IP

Object Recognition

- Neural nets trained with deep learning
- Multi-class object recognition
- Image classification
- Labeling tool and vendor team

3D Reconstruction

- Build 3D models from 2D photos
- Estimate camera poses
- Overlay detailed pictures onto 3D model
- Measure location, lengths, areas, volumes, to cm level accuracy

Questions?

Email: info@clobotics.com

Website: www.clobotics.com

