
Concurrency in Rust
Alex Crichton

What’s Rust?

Rust is a systems programming language that runs
blazingly fast, prevents segfaults, and guarantees
thread safety.

Concurrency?

Libraries

Futures

Rust?

What’s concurrency?

In computer science, concurrency is a
property of systems in which several
computations are executing
simultaneously, and potentially interacting
with each other.

Why concurrency?

Getting our feet wet

// What does this print?
int main() {
 int pid = fork();
 printf("%d\n", pid);
}

Concurrency is hard!
• Data Races

• Race Conditions

• Deadlocks

• Use after free

• Double free

Exploitable!

Concurrency?

Libraries

Futures

Rust?

What’s Rust?

Rust is a systems programming language that runs
blazingly fast, prevents segfaults, and guarantees
thread safety.

What’s safety?
void example() {
 vector<string> vector;
 // ...
 auto& elem = vector[0];
 vector.push_back(some_string);
 cout << elem;  
}

elem

vector

...
[0]

[0]

[1]

Dangling pointer!Aliased pointers

Mutation

Rust’s Solution
Ownership/Borrowing

No runtime Memory
Safety

No data
races

C++ GC

Ownership
fn main() {
 let mut v = Vec::new();
 v.push(1);
 v.push(2);
 take(v);
 // ...
}

fn take(v: Vec<i32>) {
 // ...
}

vector

vector

1

2

Ownership
fn main() {
 let mut v = Vec::new();
 v.push(1);
 v.push(2);
 take(v);
 // ...
}

fn take(v: Vec<i32>) {
 // ...
}

Ownership
fn main() {
 let mut v = Vec::new();
 v.push(1);
 v.push(2);
 take(v);
 v.push(3);
}

fn take(v: Vec<i32>) {
 // ...
}

Ownership
fn main() {
 let mut v = Vec::new();
 v.push(1);
 v.push(2);
 take(v);
 v.push(3);
}

fn take(v: Vec<i32>) {
 // ...
}

error: use of moved value `v`

Borrowing
fn main() {
 let mut v = Vec::new();
 push(&mut v);
 read(&v);
 // ...
}

vector

fn push(v: &mut Vec<i32>) {
 v.push(1);
}

v

1

fn read(v: &Vec<i32>) {
 // ...
}

Safety in Rust

• Rust statically prevents aliasing + mutation

• Ownership prevents double-free

• Borrowing prevents use-after-free

• Overall, no segfaults!

Data races

• A data race happens when there are two
concurrent memory accesses to the same location
in a program where:

• at least one is unsynchronized

• at least one is a write

Aliasing!

Mutation!

Concurrency?

Libraries

Futures

Rust?

Rust Concurrency Libs

• Language only provides ownership/borrowing

• Libraries implement common abstractions

• Flexible to cover wide range of paradigms

std::thread

let loc = thread::spawn(|| {
 “world”
});
println!(“Hello, {}!”,
 loc.join().unwrap());

std::sync::mpsc

let (tx, rx) = mpsc::channel();
let tx2 = tx.clone();
thread::spawn(move || tx.send(5));
thread::spawn(move || tx2.send(4));

// Prints 4 and 5 in an unspecified order
println!(“{:?}”, rx.recv());
println!(“{:?}”, rx.recv());

std::sync::Arc

let shared_numbers = Arc::new(vec![1, 2, 3]);
let child_numbers = shared_numbers.clone();
thread::spawn(move || {
 assert_eq!(child_numbers, [1, 2, 3]);
});
assert_eq!(shared_numbers, [1, 2, 3]);

std::sync::atomic::*

let number = AtomicUsize::new(10);
let prev = number.fetch_add(1, SeqCst);
assert_eq!(prev, 10);
let prev = number.swap(2, SeqCst);
assert_eq!(prev, 11);
assert_eq!(number.load(SeqCst), 2);

std::sync::Mutex

let lock = Mutex::new(vec![1, 2, 3]);
{
 let mut vector = lock.lock();
 vector.push(3);
}
// no more access to `vector`,
// lock is unlocked

crossbeam

• Epoch-based memory reclamation

• Easy translation of algorithms that require GC

• Work stealing deque

• MPMC queues

rayon

fn sum_of_squares(input: &[i32]) -> i32 {
 input.iter()
 .map(|&i| i * i)
 .sum()
}

rayon

use rayon::prelude::*;

fn sum_of_squares(input: &[i32]) -> i32 {
 input.par_iter()
 .map(|&i| i * i)
 .sum()
}

100% Safe

• Everything you just saw is foolproof

• No segfaults

• No data races

• No double frees…

Concurrency?

Libraries

Futures

Rust?

Async I/O in Rust (last year)

• mio, a “cross platform epoll” event loop library

• Servers were hand-written state machines

• Composition was quite difficult

What’s a future?

• Database query

• RPC request

• Timeouts

• CPU intensive work

• Socket readiness

What’s a future in Rust?

trait Future {  
 type Item;
 type Error;

 fn poll(&mut self) -> Poll<Item, Error>;
 // ...
}

Composing futures

// Run one future, then another
f.and_then(|v| new_future(v))

// Wait for both futures
a.join(b)

// Wait for one of two futures
a.select(b)

Async I/O in Rust (today)

• futures, a foundational abstraction for Async I/O

• Tokio, a runtime built on mio and futures

• Futures are at all layers of the stack

Zero-cost futures

• No allocations in combinators

• No synchronization in combinators

• Library is #![no_std] compatible

• One dynamic dispatch per event

• One allocation per connection

This is futures!

Tokio

Don’t just take my word

trait Future

• Allows for most specialized implementation

• Enables inter-combinator optimizations

• Permits dynamic dispatch when required

trait Future

fn and_then<F, B>(self, f: F) -> AndThen<Self, B, F>
 where F: FnOnce(Item) -> B,
 B: IntoFuture<Error=Self::Error>,
 Self: Sized,

Zero-cost closures

Ergonomic conversion

Cancellation

• Cancel a future by dropping it

• Ownership implies one handle to a future

• Deterministic destruction so we know what drops

Questions?

