Concurrency in Rust

Alex Crichton

What's Rust?

Rust Is a systems programming language that runs
blazingly fast, prevents segtaults, and guarantees
thread safety.

Concurrency?

Rust?

Libraries

Futures

What's concurrency”

N computer science, concurrency iIsa
property of systems in which several
computations are executing
simultaneously, and potentially interacting
with each other.

Why concurrency”

Getting our feet wet

[/ What does this print?
Int main() {
Int pid = fork();
printf("%l\n", pid);

Concurrency is hard!

Data Races

Race Conditic\

Deadlocks Exploitable!
Use after free /

Double free

Concurrency”?

Rust?

Libraries

Futures

What's Rust?

Rust Is a systems programming language that runs
blazingly fast, prevents segfaults, and guarantees
thread safety.

What's safety”

volid example () { |
vector<string> vector; Mutation

/.. /
‘auto& elem = vector|[0];

vector.push back(some string);
cout << elem;

llased om ers
Dangling point er

Rust’'s Solution

Ownership/Borrowing

/N

. Memory No data
No runtime
Safety races

I

C++ GC

Ownership

mai n() { fn take(v: Vec<i 32>) {
let nut v = Vec::new); [l ...

V. push(1); }

V. push(2);

t ake(v);

[l ...

f

fn main() {
let mut v = Vec::new);

V.
V.
ta

oush(1);
oush(2) ;

Ke(V);

...

Ownership

fn take(v:
[l ...

}

Vec<i 32>) {

Ownership

fn min() { fn take(v: Vec<i 32>) {

let mut v = Vec::new); [l ...
V. push(1); }

V. push(2);

t ake(V);

V. push(3);

Ownership

fn min() { fn take(v: Vec<i 32>) {
let mut v = Vec::new); [l ...

V. push(1); }
V. push(2);
t ake(v);

} V- PHSA{3)-

error: use of moved value v

BOrrowing

fn main() { fn paald(v: &Nat<VeEx) 3§>) {
let mut v = Vec::new); ¥l push(1);

push(&t Vv); }

read(&v) ;

[...

v

L4
L4 _
4
|
| _
-
.
~
~

_

Safety In Rust

Rust statically prevents aliasing + mutation
Ownership prevents double-free
Borrowing prevents use-after-free

Overall, no segfaults!

Data races

Aliasing!

v

* A data race happens when there are two
concurrent memory accesses to the same location

N a program where;

* atleast one Is unsynchronized

e at least one Is a write
T Mutation!

Concurrency”?

Rust?

Libraries

Futures

Rust Concurrency Libs

* Language only provides ownership/borrowing
* Libraries implement common abstractions

* Flexible to cover wide range of paradigms

std::threaad

let loc = thread::spawn (|| {
“world”
b) s
println! (“Hello, {}!7,
loc.join () .unwrap()) ;

std::sync::mpsc

let (tx, rx) = mpsc::channel ()
let tx?2 = tx.clone();

thread: :spawn (move | |
thread: :spawn (move | |

tx.send (b)) ;
tx2.send (4)) ;

// Prints 4 and 5 in an unspecified order
println! (“{:?}"”, rx.recv());
println! (“{:?}"”, rx.recv());

std::sync::Arc

let shared numbers = Arc::new(vec![1l, 2, 31);
let child numbers = shared numbers.clone();
thread: :spawn (move || {

assert eq! (child numbers, [1, 2, 3]);

b) s

assert eq! (shared numbers, [1, 2, 31);

std::sync::atomic::*

let number = AtomicUsize::new (10);

let prev = number.fetch add(l, SeqgCst);
assert eqg! (prev, 10);

let prev = number.swap (2, SeqgCst);
assert eqg! (prev, 11);

assert eqg! (number.load (SegCst), 2);

std::sync::Mutex

let lock = Mutex::new(vec!|[1l, 2, 3]);
{
let mut vector = lock.lock () ;
vector.push (3) ;

J

// no more access to ‘vector’,
// lock is unlocked

crossbeam

Epoch-based memory reclamation
Easy translation of algorithms that require GC
Work stealing deque

MPMC queues

rayon

fn sum of squares (input: &[1i32]) -> 132 {
input.iter ()
.map(|&i] 1 * 1)
.sum ()

rayon

use rayon::prelude::*;

fn sum of squares (input: &[1i32]) -> 132 {
lnput.par 1ter ()
.map(|&1] 1 * 1)
.sum ()

100% Safe

Everything you just saw is foolproof
No segfaults
No data races

No double frees...

Concurrency”?

Rust?

Libraries

Futures

Async |/O in Rust (last year)

* mio, a “cross platform epoll” event loop library
e Servers were hand-written state machines

e Composition was quite difficult

What's a future”?

 Database query

* RPC request

* Timeouts

 CPU intensive work

e Socket readiness

What's a future in Rust?

trait Future {
type Item;
type Error;

fn poll (&mut self) -> Poll<Item, Error>;
//

Composing futures

// Run one future, then another
f.and then(|v]| new future(v))

// Wait for one of two futures
a.select (b)

// Wait for both futures
a.join (b)

Async |/O in Rust (today)

e futures, a foundational abstraction for Async |/O
* Jokio, a runtime built on mio and futures

* Futures are at all layers of the stack

/ero-cost futures

No allocations in combinators

No synchronization in combinators
Library is #![no_std] compatible
One dynamic dispatch per event

One allocation per connection

This Is futures!

Don't just take my word

Tokio

/7

trait Future

* Allows for most specialized implementation
 Enables inter-combinator optimizations

 Permits dynamic dispatch when required

trait Future

/ero-cost closures

l

fn and then<F, B>(self, f: F) -> AndThen<Self, B, F>
where F: FnOnce (Item) -> B,
B: IntoFuture<Error-Self::Error>,

Self: Sized, \

Ergonomic conversion

Cancellation

* Cancel a future by dropping it
* Ownership implies one handle to a future

* Deterministic destruction so we know what drops

