
WEB SERVICE EFFICIENCY AT
INSTAGRAM
2017 QCon Beijing
Hao Chen 陈昊
Instagram Infrastructure
chenh@fb.com



2



INSTAGRAM

3

• A community where people capture
and share world’s moments and
tell their stories.

• More than 600M* people are using
our service every month.

* Q4 Facebook earnings call, Feb 2017



AGENDA

4

1 Overview

2 Efficiency Tooling

3 Optimization Case Study



Web Servers

IG ARCHITECTURE OVERVIEW

5

Client
s

Load 
Balancer

Web Server

Web Server

Web Server

Web Server

Backend DB/Services

MySQL

Cassandra

RabbitMQ + Celery 
(Async tasks)

Thrift-based 
services



A Web Server

WHAT’S INSIDE A WEB SERVER?

6

uWSGI

Python +
Django

Python +
Django

Python +
Django



WHY EFFICIENCY

• Servers and datacenter power are not free

• Serve as many users as possible with one server
7

User growth Server Growth



WHY EFFICIENCY (CONT’D)

• Capacity utilization awareness

• Disaster readiness

• Capacity estimation for new products

8



DEFINING EFFICIENCY
Choose the target

9

CPU Memory Disk IO Network

Physical Resource Restrictions

Detect bottleneck by load
testing



QUANTIFYING EFFICIENCY
Choose the metric

• CPU Time

× Affected by CPU models

× Affected by runtime CPU load

10

• CPU Instructions

✔ Stable regardless of runtime
environments

✔ Measure via hardware counters
on Linux



EFFICIENCY TOOLING



Efficiency Regression: Use more CPU instr to serve a request

DETECTING REGRESSIONS

12



DYNOSTATS
• Perf metrics

• CPU Instr

• Memory

• Latency

• Number and time of backend calls

• …

• Metadata for aggregation

• Endpoint name

• Server/cluster name

• Client platform (iOS/Android) and
version

• Configuration parameter

• … 13

Client
s

Web Server

Web Server

Web Server

Web Server

Web Server

Sample prod
requests



WHY DYNOSTATS?

• Detect regressions

• When?

• How much?

• Which endpoint(s)?

• Monitor with Cron jobs

• Fire alerts to on-
call

14



TRIAGING REGRESSIONS

15



WHAT TO DO WITH REGRESSIONS?

• Who introduced this regression?

• Inefficient new code? 

• Configuration changes? 

× Problem: Dynostats only has request-level metrics

 Solution: Function-level perf measurement

16



CPROFILE

• Python’s built-in profiling tool

• function-level perf statistics + call graph information

• Only enabled for a small subset of prod requests (because of overhead)
17

{ (‘foo.py’, ‘foo’, 30), (‘bar.py’, ‘bar’, 50) → (300, 20, 3) } 

Caller function Callee function Perf stats

file name
func name

line no

cumulative
CPU instr

inline
CPU instr

no of calls



ROOT CAUSE REGRESSION

18

Top-level function Callees

Drill

down



FINDING EXISTING BOTTLENECKS

• List most expensive functions

• Add a cache?

• Optimize algorithm?

• Re-write in C++?

• Example: 6.5% global CPU was used by imports

• 4.2% saved by just removing in-function imports in hot
functions

19

from a.b import func

func()

import a

a.b.func()
work around circular 

imports



OUT-OF-BOX CPROFILE ISN’T
PERFECT
Our customizations to cProfile

• Doesn’t distinguish decorator
functions

• Hard to identify a function

• Add class name

• Huge overheads hide regression

• Calibration

20

def a():

b()

@decorator

def b():

pass

def c():

d()

@decorator

def d():

pass

a c

b d

decorato
r

Dynostats cProfile

(‘foo.py’, ‘foo’, 30)



PREVENTING REGRESSIONS

21



INSTALAB

• A traffic replay system

• Record prod requests and replay them in a controlled environment

22



WHY TRAFFIC REPLAY?

• Experiment changes without affecting production!

• Detect efficiency regressions before new code lands

• Catch elevated errors before new code lands

• Reproduce failures

23



INSTALAB: EXAMPLE

24

An experiment input sample
{

"workload":"instagram_server",

"sides":[

{

"name":"a",

"build_input":{

"fbpkg_map":{

"instagram.server":"3ede50ab5d80455f8901a73c547cdbc2"

}

}

},

{

"name":"b",

"build_input":{

"fbpkg_map":{

"instagram.server":"54c91e4bcc6c48158efe7ab2b8f06a17"

}

}

}

]

}



INSTALAB: CHALLENGE

• Problem: avoid writes to prod data

• Solution: intercept requests

• Monkey patch functions

• Drop writes or fake responses

• Attach “don’t log” metadata to requests

25



SECTION RECAP

26



RECAP

• Detect: Dynostats

• Triage: cProfile

• Prevent: InstaLab

• Wins

• Saved >70% global CPU in Q1 2017

• Launched new major features without any capacity issue

27



TAKEAWAYS

• Profile, profile & profile

• Caches fix most regressions

• Don’t do more than you need

28



OPTIMIZATION CASE STUDY



SHARED MEMORY

30



WHY SHARED MEMORY?

31

Reduce
memory

footprint
? ? ?

Less CPU
usage



MASTER-WORKER MODEL

• Multi-process (because of GIL)

• Worker handles requests

• Master respawns worker when it
exceeds memory limit

32

Master

Worker

Worker

WorkerWorker



MASTER-WORKER MODEL (CONT’D)

• Problem

• Worker processes don’t share
memory with each other

• Large in-memory configurations
duplicated in each worker

33

Master

Worker

Worker

Worker

Worker

Worker

Worker



WHY REDUCE MEMORY FOOTPRINT?

34

Reduce
memory
footprin

t

Less CPU
usage

More 
budget 
for 

memory 
growth

Longer
worker

lifecycle

Better
cache

utilizati
on



OPTIONS COMPARISON
Remove configs from workers’ private memory

• Local in-memory DB (e.g. MC/Redis)

× Efficiency overhead: data copy
via sockets

× Maintenance overhead

35

• Shared memory

✔ Supported by uWSGI (uWSGI
cache)

✔ Simple key-value-style API

✔ Memory allocated in master,
shared by all workers

✔ Tiny overhead (mmap)

uwsgi.cache_get(key, cache_name)

uwsgi.cache_update(key, value, expires, cache_name)

uwsgi.cache_keys(cache_name)

uwsgi.cache_clear(cache_name)



WINS

• Respawn rate: 58%⬇

• Per-request memory growth: 65.03%⬇

• Per-request CPU instr: 5.75%⬇

36



A PITFALL

• Heavy reads, rare writes

• read/write lock (pthread_rwlock_t)

• Issue: occasional deadlock in production

• only 1~2 times per day among the whole fleet

• very difficult to reproduce

37



A PITFALL (CONT’D)

• Root cause: R/W lock

• Created on OS level

• Not released when worker killed

• uWSGI’s deadlock detector is buggy

• only release the last reader

• Solution: Semaphore

• uWSGI option: `lock-engine = ipcsem` 

• Negligible perf difference compared with r/w lock

• Takeaway: old, simple and reliable techniques are more preferable than 
the new and fancy ones 38



CYTHONIZATION

39



EXPENSIVE FUNCTIONS?

• Implement expensive functions in C++?

× Massive code changes

× New bugs

× Hard to measure gain before migrating everything

40



CYTHON IS YOUR FRIEND

• Cython is a Python-to-C compiler

• write code in Python-like syntax

• run code with C-like performance

✔ Compile Python code without changes

✔ Call back and forth between C and Python functions

✔ Static type declarations

• Any C/C++ types: int, double, pointer, struct, union, STL

41



CYTHON WORKFLOW

1. Detect expensive modules (from profiling data)

• Low-level, CPU intensive, Relatively stable

2. Compile it

3. Add static types

42



STATIC TYPES EXAMPLE

43

def f(x):

return x * x

def g(n):

result = 0

for i in range(N):

result += f(i)

return result

cdef long f(int x):

return x * x

def g(int n):

cdef:

long result

int i

result = 0

for i in range(N):

result += f(i)

return result

150x
Faster!

for(i=0; i<N; i++)

result+= f(i)



CYTHON WORKFLOW

1. Detect expensive modules (from profiling data)

• Low-level, CPU intensive, Relatively stable

2. Compile it

3. Add static types

4. [Optional] Apply additional optimizations

• Low-level features: STL; Raw pointers; Pure C code

✔ Minor code changes

✔ Progressive optimization

44



CYTHON: CHALLENGES

• Slow compilation

• Incompatibilities

• Debugging and profiling tools support

45



CYTHON: RECAP

• 10-ish modules converted

• 30% global CPU Win

46



47

Eng blog: https://engineering.instagram.com


