
Xiang Li
xiang.li@coreos.com  | Head of distributed system

Self driving infrastructure

mailto:email@emailemail.com


Topics
● Cluster management systems
● Today’s problems with operating cluster management 

systems
● A self-driving approach



Motivation: microservices
● Increased operational cost

○ a lot of components
○ dynamic dependencies
○ fast deployment iteration

● Solution: automation



Cluster management system
● Automation

○ Scheduling
○ Deployment
○ Healing
○ Discovery/load balancing
○ Scaling



Scheduling

Scheduler



Scheduler

Scheduling



Scheduler

Scheduling



color=yellow

Discovery



Select color = yellowcolor=yellow

Discovery



yellow.mycluster
Select color = yellow

Load balancing



Controller manager 5
Healing



Controller manager 5
Healing



Controller manager 5
Healing



People love automation!





I hate Kubernetes!



I hate to 
OPERATE
Kubernetes!



Kubernetes Architecture



Operating Kubernetes
● Installation
● Upgrade
● Healing
● Scaling
● Security
● Monitoring
● ...



Installation
- SSH
- Install kubelet

- $pkgmanager install kubelet
- Install container runtime

- $pkgmanager install [docker|rkt]
- Start kubelet

- Systemctl start kubelet



Installation - master
- SSH
- Install scheduler
- Install controller manager
- Install API server
- Config them correctly
- Start them



Installation - etcd
- SSH
- Install etcd
- Config them correctly
- Start them



Installation

kops, kubeup.sh, kube-AWS,...

AWS, GCP API

node1 node2 node3



Upgrade
- SSH
- Upgrade container runtime
- Upgrade Kubelet



Upgrade - master
- SSH
- Upgrade master components



Upgrade - etcd
- SSH
- Upgrade etcd



Upgrade

kops

AWS, GCP API

node1 node2 node3



Rollback

???

AWS, GCP API

node1 node2 node3



Healing

AWS, GCP API

node2 node3



Healing

AWS, GCP API

node2 node3node1’

Create node



Healing

AWS, GCP API

node2 node3node1’

Install

Config



Problems
A lot of manual/semi-manual work
No standard way to approach all the problems

do it wrong, lose the cluster!



gcc

// gcc source code

#include <stdio.h>

int main()

{

    compile_c(argv[1]);

}

gcc

Self hosting



go

// golang source code

package main

import "os"

func main() {

  compile_go(os.Args[1:])

}

go

Self hosting



Self hosting



$ uname -s 

minix

$ gcc linux.c

Self hosting



$ uname -s 

minix

$ gcc linux.c

Self hosting



Self hosting



$ uname -s 

linux

$ gcc linux.c

Self hosting



$ uname -s 

linux

$ gcc linux.c

Self hosting



Self-hosted Kubernetes?



What is self-hosted Kubernetes?
● Kubernetes manages own core components 
● Core components deployed as native API objects



Self-hosted k8s Architecture



Why Self-host Kubernetes?
● Operational expertise around app management in k8s 

extends to k8s itself
○ E.g. scaling

● Bootstrapping simplified
● Simply cluster life cycle management

○ E.g. updates
● Upstream improvements in Kubernetes directly 

translate to improvements in managing Kubernetes



Simplify Node Bootstrap

On-host requirements become:
● Kubelet
● Container Runtime (docker, rkt, …)



Any Distro Node Bootstrap

● Install kubelet
○ $pkgmanager install kubelet

● Install container runtime
○ $pkgmanager install [docker|rkt]

● Write kubeconfig
○ scp kubeconfig user@host:/etc/kubernetes/kubeconfig

● Start kubelet
○ Systemctl start kubelet



$ kubectl apply -f kube-apiserver.yaml
$ kubectl apply -f kube-scheduler.yaml
$ kubectl apply -f kube-controller-manager.yaml
$ kubectl apply -f kube-proxy.yaml

Simplify k8s lifecycle management
Manage your cluster with only kubectl

Upgrading a self-hosted Kubernetes cluster:



Launching a self-hosted cluster

Need an initial control plane to bootstrap a self-hosted cluster

Bootkube:

● Acts as a temporary control plane long enough to be 
replaced by a self-hosted control plane.

● Run only on very first node, then not needed again.

github.com/kubernetes-incubator/bootkube



How Bootkube Works



etcd

Kubelet



Bootkube

API Server

Scheduler

Controller 
Manager

etcd

Kubelet



Bootkube

API Server

Scheduler

Controller 
Manager

etcd

Kubelet



Bootkube

API Server

Scheduler

Controller 
Manager

etcd

Kubelet



Bootkube

API Server

Scheduler

Controller 
Manager

etcd

Kubelet
Create:

Deployment
Daemonset
Service
Secret



Bootkube

API Server

Scheduler

Controller 
Manager

etcd

Kubelet

Pods

API Server

Scheduler

Controller 
Manager



Bootkube

API Server

Scheduler

Controller 
Manager

etcd

Kubelet

Pods

API Server

Scheduler

Controller 
Manager



etcd

Kubelet

Pods

API Server

Scheduler

Controller 
Manager



etcd

Kubelet

Pods

API Server

Scheduler

Controller 
Manager



But wait! There’s more!

You can even self-host etcd!

https://coreos.com/blog/introducing-the-etcd-operator.html
https://github.com/coreos/etcd-operator



How to bootstrap self-hosted 
etcd



Bootkube

API Server

Scheduler

Controller 
Manager

Kubelet

etcd



Bootkube

API Server

Scheduler

Controller 
Manager

Kubelet Pods

API Server

Scheduler

Controller 
Manager

etcd

etcd 
operator



Bootkube

API Server

Scheduler

Controller 
Manager

Kubelet Pods

API Server

Scheduler

Controller 
Manager

etcd

etcd 
operator

Seed node



Bootkube

API Server

Scheduler

Controller 
Manager

Kubelet Pods

API Server

Scheduler

Controller 
Manager

etcd

etcd 
operator

etcd

Add 
Member



Bootkube

API Server

Scheduler

Controller 
Manager

Kubelet Pods

API Server

Scheduler

Controller 
Manager

etcd

etcd 
operator

etcd

Remove member



Kubelet Pods

API Server

Scheduler

Controller 
Manager

etcd 
operator

etcd



Disaster Recovery

Node failure in HA deployments (Kubernetes)

Partial loss of control plane components (Kubernetes)

Power cycling the entire control plane (Kubernetes)

Permanent loss of control plane (External tool)



Disaster Recovery

Permanent loss of control plane
● Similar situation to initial node bootstrap, but utilizing 

existing etcd state or etcd backup.
● Need to start a temporary replacement api-server

○ Could be binary, static pod, new tool, bootkube, etc.
● Recovery once etcd+api is available can be done via 

kubectl (as seen previously)



Self-Driving Kubernetes



- A self-hosted cluster launched via Bootkube

- Upgraded via Kubernetes APIs and an Operator

- Automated by single-button or fully automatic

Self driving



Cluster is running v1.4.3 and configured to run v1.4.5
● API Server is v1.4.3
● Scheduler is  v1.4.3

Kubernetes Version Operator

Differences from desired config
● API Server should be v1.4.5
● Scheduler should be v1.4.5

How to get there
● Upgrade all API servers Daemons to v1.4.5 safely 

one-by-one
● Upgrade all Scheduler Deployments to v1.4.5
● Update status to v1.4.5



The infrastructure

Workload driven

Automation driven

Easy to manage: self driving approach (Today’s topic)

Security focused



Thank you!

Xiang Li
xiang.li@coreos.com

mailto:email@emailemail.com

