
用AI高效测试移动应用
杨峻峰

Use AI to Effectively
Test Mobile Apps

https://nimbledroid.com

Junfeng Yang

My Passion: Build Great Dev Tools

junfeng@nimbledroid.com | https://nimbledroid.com

Stanford
Microsoft
Columbia

Loves coding, hates testing Tsinghua

NimbleDroid

• Years of research, development, and teaching in the area
• Helped developers of widely used systems (e.g., Linux)

• Founded NimbleDroid backed by NSF, Columbia, IDG, etc
• Example customers: eBay, flipkart, Pinterest, Disney

This talk is based on experiences analyzing apps in overseas markets

Disclaimer

May not be completely applicable to apps in Chinese markets

Can be helpful for app developers who target overseas markets

In fact, our service nimbledroid.com requires VPN to access from China

junfeng@nimbledroid.com | https://nimbledroid.com

Two Competing Goals of App Development

Development SpeedApp Quality

junfeng@nimbledroid.com | https://nimbledroid.com

App Quality Matters

Issues like crashes, memory leaks, and slowdowns decrease
user engagement and revenue

junfeng@nimbledroid.com | https://nimbledroid.com

https://play.google.com/store/apps/details?id=com.abc.abcnews&reviewId=Z3A6QU9xcFRPRWZjREFaM3hwdFpSWVZWeUh0TXdJZU9uZ21YWlVYRVpRWUl2aG95SEhFZGQtVWZaTG1jeUNFU19TcUplS1hKaHVXeThVN2p4ZWVoWVprWmxN
https://play.google.com/store/apps/details?id=com.abc.abcnews&reviewId=Z3A6QU9xcFRPRWZjREFaM3hwdFpSWVZWeUh0TXdJZU9uZ21YWlVYRVpRWUl2aG95SEhFZGQtVWZaTG1jeUNFU19TcUplS1hKaHVXeThVN2p4ZWVoWVprWmxN

Development Speed Matters

User demands and market competitions change all too fast

junfeng@nimbledroid.com | https://nimbledroid.comConfidential

Continuous Integration (CI) to the Rescue

junfeng@nimbledroid.com | https://nimbledroid.com

CI Advantages

Better app quality
● A comprehensive CI testsuite continuously tests for errors
● Avoid building on the wrong foundation

Faster development speed
● Developers get instant feedback on code checkins, instead of forensically

analyzing where errors creep in
● More errors detected during development ⇒ shorter code freeze or manual

testing durations

junfeng@nimbledroid.com | https://nimbledroid.com

But, CI Poses Big Challenges to Testing

Manual testing
● Slow and expensive, at odds with CI
● Imagine poor manual testers trying to keep up with 10+ checkins per day on

20+ devices with manual device rotation testing after each click

Automated testing
● Supposedly test automation is good for CI
● But, in practice, automated app UI test automation still requires much

babysitting from developers

junfeng@nimbledroid.com | https://nimbledroid.com

Today’s Automation Needs Devs to Babysit

I have worked in several companies that have had goals of automated UI regression
test suites, but I've never worked at a company that pulled it off successfully“

”atiffany @HackerNews

Huge pain point echoed by 100+ devs we’ve interviewed

junfeng@nimbledroid.com | https://nimbledroid.com

Test Creation Test Maintenance
Result

Interpretation
Test Run

Have to create
low-level, click-by-
click tests

Test failures are
often caused by
tests themselves or
test infrastructure,
not bugs in code

Have to update
tests whenever
they become
outdated to app UI

Why Are Developers
Forced to Spend So Much Time Here?

Example test: “adding to shopping cart works”

Today’s Automation is Not Smart (1)

Lacks human vision, language understanding, context, judgement

Human vision
recognize shopping cart image

Language
understanding recognize

items for sale and prices

Context
shopping app, need to test
- items added to cart are there
- items not added are not there
- ...

Judgement
this popup ad should be bypassed
without failing the test

junfeng@nimbledroid.com | https://nimbledroid.com

Today’s Automation is Not Smart (2)

Lacks app code and execution understanding, system monitoring

Code understanding

Understand intended UI
changes and update tests

Execution
understanding

Detect bugs such as UI
hangs and memory leaks
and pinpoint root causes

System monitoring

Monitor test infrastructure
flakiness such as transient

network slowdowns

junfeng@nimbledroid.com | https://nimbledroid.com

Q: How intelligent can we make an automated QA platform?
A: Very.

If we take:

Advanced program analysis including
● App instrumentation and monitoring
● Automatic error detection

Advanced AI and machine learning including
● Natural language processing
● Computer vision / image recognition

Our Vision: AI for App QA

junfeng@nimbledroid.com | https://nimbledroid.com

Outline

• Vision: AI for app QA
• Current system we’ve built
• Zoom in: top issues slowing down your app

junfeng@nimbledroid.com | https://nimbledroid.com

Intelligent Mobile App QA

Test Run
Result

Interpretation
Result

Management
UI droid crawls an

app’s user
interface

Scalable device
cloud

infrastructure

Test Creation
Measure accurate

performance results
and detect crashes,

memory leaks,
slowdowns, and

regressions via app
instrumentation

Cloud analytics
provides a central place

to all tests & results,
accessible to all devs,
QAs, and managers

Test Run
Result

Interpretation
Test Management

junfeng@nimbledroid.com | https://nimbledroid.comConfidential

Auto-test every build of your Android app for critical issues“ ”

App Instrumentation

Devs

System Architecture

QAs

Manager
s

Cloud Analytics

Upload
APK via
web or

API

View
reports via
Web or API

historical Results

Device Cloud
UI Droid

junfeng@nimbledroid.com | https://nimbledroid.comConfidential

Demo

2. Scenario overview with trending analytics1. Multiple scenarios
crawled by UI droid

3. Call stack with times for detailed diagnosis

junfeng@nimbledroid.com | https://nimbledroid.com

Sr Mobile Engineering Manager, Yahoo
“Performance tuning is difficult, tedious and time consuming.
NimbleDroid makes the task suck infinitely less.”

Mobile Practice Lead, Abercrombie & Fitch
“I would highly recommend nimbledroid for anyone looking to
improve startup performance of their Android application.”

Software Engineer, Azimo
“... NimbleDroid makes the task easier and more pleasant.”

Android Software Architect, New York Times
“By far my favorite androiddev tool in a long time”

VP of Product and Engineering, RunKeeper
“Automatic discovery of user flows was so good we thought it
was humans doing it via Mechanical Turk!”

User Quotes

junfeng@nimbledroid.com | https://nimbledroid.com

Community Recognition
NYTimes dev blog post on how they leveraged NimbleDroid to make
their Android app start 3x faster

Top result of Google search “sdk slowing app down”

National Science Foundation SBIR Award

Invited to run App Garage Performance Clinic at Droidcon London

Invited talks on Android performance at Droidcon and AnDevCon

90% of our tech blog posts were featured by Android Weekly, the
largest Android development newsletter

junfeng@nimbledroid.com | https://nimbledroid.com

http://open.blogs.nytimes.com/2016/02/11/improving-startup-time-in-the-nytimes-android-app/
https://www.google.com/#q=sdk+slowing+app+down
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1621982

Outline

• Vision: AI for app QA
• Current system we’ve built
• Zoom in: top issues slowing down your app

junfeng@nimbledroid.com | https://nimbledroid.com

Three Types of App Starts

• Cold start: after user hasn’t run app for a while
• App killed by Android
• Need to load app’s code and assets, create activities, etc

• First start: fresh after installation
• App and Android do more than cold start, such as db init, cache init,

DEX compilation (if multidex), letting users input credentials

• Warm start: shortly after user switches away from app
• App still cached in memory

junfeng@nimbledroid.com | https://nimbledroid.com

Limit Cold Start to 2 Seconds

http://blog.nimbledroid.com/2016/02/17/cold-start-times-of-top-apps.html

30-40% top apps start in 2s
70% start in 3s

http://blog.nimbledroid.com/2016/02/17/cold-start-times-of-top-apps.html?top?=25&category=MUSIC_STREAMING
http://blog.nimbledroid.com/2016/02/17/cold-start-times-of-top-apps.html?top?=25&category=MUSIC_STREAMING
http://blog.nimbledroid.com/2016/02/17/cold-start-times-of-top-apps.html

Top 5 Issues that Slow Down App
Start
• Reflection
• Dependency injection
• Too much work in main thread
• ClassLoader.getResourceAsStream() and the like
• Slow 3rd party SDKs

Reflection Micro-benchmark

public static class DummyItem {}

private void createDummyItem() {
for(int i = 0; i < 1_000_000; i++)

new DummyItem();
}

private void createDummyItemWithReflection() {
for(int i = 0; i < 1_000_000; i++)

DummyItem.class.newInstance();
}

https://github.com/NimbleDroid/ReflectionTests

https://github.com/NimbleDroid/ReflectionTests

Reflection Micro-benchmark Results (ms)

Reflective version is
4x-20x slower. 5.0
ART is much slower
than 4.1.2 Dalvik

Example: NYTimes

• http://open.blogs.nytimes.com/2016/02/11/improving-startup-time-
in-the-nytimes-android-app/

http://open.blogs.nytimes.com/2016/02/11/improving-startup-time-in-the-nytimes-android-app/

One Performance Issue: Reflection

• NYTimes switched to custom type adapters

• Use Immutables to keep developer overhead to a minimum

https://nimbledroid.com/play/com.nytimes.android?p=2ms858ga8INTPO#ReflectiveTypeAdapterFactory.getBoundFields
https://nimbledroid.com/play/com.nytimes.android?p=2ms858ga8INTPO#ReflectiveTypeAdapterFactory.getBoundFields

Reducing reflection overhead

• Be extra careful with reflection in your Android app
• Avoid reflective type adapters when dealing with many

objects

http://blog.nimbledroid.com/2016/02/23/slow-Android-reflection.html

http://blog.nimbledroid.com/2016/02/23/slow-Android-reflection.html

Top 5 issues that slow down app start

• Reflection
• Dependency injection
• Too much work in main thread
• ClassLoader.getResourceAsStream() and the like
• Slow 3rd party SDKs

Dependency injection

• Two possible approaches: dynamic (RoboGuice) vs static
(Dagger1&2)

• Dynamic approach slows down app startup significantly!
• RogoGuice is 5x or more slower on our micro-benchmark
• ↓0.8s, new version switched to dagger
• American Express 1.7s (switched to dagger), Groupon 0.8s,

Fandango 3.4s, …

• One more thing: RoboGuice has 10,000 more methods than
Dagger

Reducing dependency injection overhead

• Use Dagger libraries for dependency injection
• Use Dagger 2 if you can because it is slightly better than

Dagger 1

junfeng@nimbledroid.com https://nimbledroid.com

http://blog.nimbledroid.com/2016/03/07/performance-of-dependency-injection-libraries.html

http://blog.nimbledroid.com/2016/03/07/performance-of-dependency-injection-libraries.html

Top 5 issues that slow down app start

• Reflection
• Dependency injection
• Too much work in main thread
• ClassLoader.getResourceAsStream() and the like
• Slow 3rd party SDKs

junfeng@nimbledroid.com https://nimbledroid.com

Too much work in main thread

• Main thread responds to user actions
• Too much work ➔ slow, janky
• Android’s Strict Mode catches network, storage, and db

accesses
• We’ve also seen data parsing, crypto, class initialization, …

junfeng@nimbledroid.com https://nimbledroid.com

Example: Hollister

• Hollister spends ~2600ms to parse nationwide store info:
stores_af.json - 188 KB
stores_hco.json - 419 KB
stores_kids.json - 108 KB

500,000 - 1,000,000 installs

junfeng@nimbledroid.com https://nimbledroid.com

Version 3.1.2

Startup: 5.22 seconds

https://play.google.com/store/apps/details?id=com.abercrombie.hollister&reviewId=Z3A6QU9xcFRPRkRSNHdvdEhoUmdxUjB2SU0tVGphSEUyNC1zQk9SMDFHcXdTWXhSMXF0ZmRELU5pUHlUTHZUQ2JkU2tZOE81US1FLUhjc0l0cGpLNk04b0FN
https://play.google.com/store/apps/details?id=com.abercrombie.hollister&reviewId=Z3A6QU9xcFRPRkRSNHdvdEhoUmdxUjB2SU0tVGphSEUyNC1zQk9SMDFHcXdTWXhSMXF0ZmRELU5pUHlUTHZUQ2JkU2tZOE81US1FLUhjc0l0cGpLNk04b0FN

Hollister 3.1.2 startup: 5.22s

junfeng@nimbledroid.com https://nimbledroid.com

https://www.nimbledroid.com/play/com.abercrombie.hollister?p=24MpWQo0PFe7cX
https://www.nimbledroid.com/play/com.abercrombie.hollister?p=24MpWQo0PFe7cX

Why so slow?

junfeng@nimbledroid.com https://nimbledroid.com

https://www.nimbledroid.com/play/com.abercrombie.hollister?p=24MpWQo0PFe7cX
https://www.nimbledroid.com/play/com.abercrombie.hollister?p=24MpWQo0PFe7cX

Hollister 4.0.0 startup: 2.21s

junfeng@nimbledroid.com https://nimbledroid.com

https://www.nimbledroid.com/play/com.abercrombie.hollister?p=2LimY5nZctjHsy
https://www.nimbledroid.com/play/com.abercrombie.hollister?p=2LimY5nZctjHsy

Reducing work in main thread

• Move work to background
• Write more efficient code

junfeng@nimbledroid.com | https://nimbledroid.com

Top 5 issues that slow down app start

• Reflection
• Dependency injection
• Too much work in main thread
• ClassLoader.getResourceAsStream() and the like
• Slow 3rd party SDKs

ClassLoader.getResourceAsStream()

• ~7ms on PC but ~1700 ms on Android (with 3K resource files)!
• Extra work done in first call in Android: index all resources in APK, verify

certificate, parse manifest file. Delay is proportional to APK size

• ↓0.4s ↓1.3s ↓1.7s

• Avoid ClassLoader.getResource*(); use Android’s Resources

public class DemoApplication extends Application {
@Override
public void onCreate () {

super.onCreate();
Properties properties = new Properties();
try {

properties.load(getClass().getResourceAsStream("/assets/test1.properties"));
} catch (IOException e) { …
}

}
}

junfeng@nimbledroid.com | https://nimbledroid.com

Top 5 issues that slow down app start

• Reflection
• Dependency injection
• Too much work in main thread
• ClassLoader.getResourceAsStream() and the like
• Slow 3rd party SDKs

junfeng@nimbledroid.com | https://nimbledroid.com

Slow 3rd party SDKs

• They can slow down your app
• Hard to track down because code isn’t written by you
• Not your fault, but you have to work around it ☹

junfeng@nimbledroid.com | https://nimbledroid.com

10 slowest SDKs based on app startup
delay

junfeng@nimbledroid.com | https://nimbledroid.com

org.joda.time.DateTime()

• Even for this simple app, ↓0.4s

• ↓2s

• Culprit: DateTime() calls getResourceAsStream() to load time
zone data from APK

• Create your own fast DateTimeZoneProvider! See stackoverflow

• Or use date4j or joda-time-android

import org.joda.time.DateTime;
import android.app.Application;

public class DemoApplication extends Application {
static {

new DateTime();
}

}

junfeng@nimbledroid.com | https://nimbledroid.com

http://stackoverflow.com/questions/5059663/android-java-joda-date-is-slow

SDKs that call ClassLoader.getResource*()
SDK # apps affected

mobileCore 251

SLF4J 70

StartApp 67

Joda-Time 55

TapJoy 52

Google Dependency

Injection 46

BugSense 41

RoboGuice 35

OrmLite 26

… …

20% SDKs call
getResource*()

junfeng@nimbledroid.com | https://nimbledroid.com

Apps affected by SDK getResrouce*()
Affected apps Downloads

com.amazon.kindle > 100,000,000

tunein.player > 100,000,000

com.sgiggle.production > 100,000,000

com.mobilemotion.dubsmash > 50,000,000

com.sirma.mobile.bible.android > 50,000,000

com.melodis.midomiMusicIdentifier.freemium > 50,000,000

com.badoo.mobile > 50,000,000

com.outfit7.talkingangelafree > 50,000,000

com.loudtalks > 50,000,000

com.quvideo.xiaoying > 50,000,000

… …

11% apps
affected

junfeng@nimbledroid.com | https://nimbledroid.com

Conclusions

• Vision: AI for Software QA
• Competing app development goals: speed vs quality
• CI helps, but raises challenges for test automation
• AI can be the rescure

• Our current system
• Intelligent crawler + app instrumentation

• Zoom in: top issues slowing down your app
• Reflection, dependency injection, too much work in main thread,

ClassLoader.getResourceAsStream() and the like, and slow 3rd-
party SDKs

Test your app now at
https://nimbledroid.com

https://nimbledroid.com/

