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SINGLE POINT OF FAILURE



Adding more replicas
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REDUNDANCY

•scale out the reads
•resilient to machine crashes
•more concurrency
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CHALLENGES

consistency synchronization fence off stale write



Focusing on our four 9s’ availability
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OUR FOCUS

Availability % Downtime per year Downtime per month Downtime per week Downtime per day

99% (“two nines”) 3.65 days 7.20 hours 1.68 hours 14.4 minutes

99.9% (“three nines”) 8.76 hours 43.8 minutes 10.1 minutes 1.44 minutes

99.99% (”four nines”) 52.56 minutes 4.38 minutes 1.01 minutes 8.66 seconds



Take human out of the equation
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Take human out of the equation
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Take human out of the equation

•System reacts to a subset of failure modes CORRECTLY

•Human makes judgement call in the disastrous scenarios.

OUR FOCUS
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Linearizability

•If a write to a key (which identifies a piece of data) is successfully 

applied, all the subsequent reads via the same key must return the 

same data written by this particular write or some later write;

•If a read of a key returns some data, all subsequent reads via the 

same key must return the same data or some data from some later 

write.
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• Replicated state machine

– A type of active replication

– All replicas receive and process the same sequence of client requests

• Consensus protocol to maintain the replicated log consumed by replicas

– Elect leader automatically

– Tolerate node failure (non-Byzantine failures)

– Maintain consistency among nodes

METHODOLGY
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• Deterministic state machines running on a collection of servers.

• Each state machine computes identical copies of the same data.

• The system can continue to operate even if some servers are down.

REPLICATED STATE MACHINE
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• Log is an append-only and totally ordered abstraction.

• Log replication makes every replica see the exact order of entries.

• If we treat every write to DB as an entry in the log, applying these entries on the same 

starting snapshot in the same order will yield same ending snapshot.

• Replicated log is maintained by consensus protocol.

REPLICATED LOG
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• Each server stores a log containing a series of commands which are 

executed in order by the state machine.

• Each log contains the same commands in the same order.

• State machine is deterministic so each computes the same state and 

has the same sequence of outputs.

Replicated State Machine
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REPLICATED LOG
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• Election Safety
At most one leader can be elected in a given term.

• Leader Append-Only
A leader never overwrites or deletes entries in its log; it only appends new 
entries. 

• Log Matching
If two logs contain an entry with the same index and term, then the logs are 
identical in all entries up through the given index.

• Leader Completeness
If a log entry is committed in a given term, then that entry will be present in the 
logs of the leaders for all higher-numbered terms. 

• State Machine Safety
If a server has applied a log entry at a given index to its state machine, no other 
server will ever apply a different log entry for the same index.

RAFT
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Note that we don’t have a ’global’Raft set-up for the entire system; rather the data is partitioned into multiple partitions each of 

which has its own Raft set-up. Sharding is out of scope of this talk but the overall system architecture looks like the following.

SYSTEM SET-UP
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STRONGLY CONSISTENT READ
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STRONGLY CONSISTENT READ
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• Statement Idempotency

• There may be non-idempotent SQL statements. Even if the replicated log is consistent we cannot 

allow same statement to apply twice.

• Our solution: using Raft entry index to construct the GTID

• Parallel Execution

• Raft essentially sequentializes everything which compromises the the parallelism if we would use 

Mysql directly.

• Our solution: parallel execution SQL statements based on the shard that the statement targets at.

• Auto Increment ID

• Mysql’s auto increment ID is NOT transactional so we can NOT have individual replica use its own 

auto increment ids.

• Our solution: use Raft to maintain the cluster-wide auto increment ID.

INTEGRATION WITH MYSQL

April 16, 2017 23



• Observer

A participant which doesn’t vote nor solicit a vote

• Arbitrator

A participant which acts as a voter but will relinquish leadership (if allowed by the 

consensus protocol) if it itself is elected as the leader.

• Leader Lease

• DC awareness/Efficient cross DC data streaming

RAFT EXTENSIONS 
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Within one DC we can achieve tolerance of two nodes being down with the cost of 3 copies of 

data, which is not possible with the vanilla 3-voter set-up.

ARBITRATOR
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CROSS DC SET-UP
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Leader and its majority are 

in the same DC

Leader and its majority are 

in DIFFERENT DCs.

Requester and leader are in 

the same DC

Intra-dc latency one xdc roundtrip

Requester and leader are in 

DIFFERENT DCs

one xdc roundtrip two xdc roundtrips



SHARD SPLITTING
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Extending capacity??



SHARD SPLITTING
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Split original shard into shard 1 and shard 2

•Very short ‘downtime’, i.e. write failures

•No need to stop the traffic

•Split is idempotent



Coordinated Transaction among Replicas

• Cross-shard transactional update

Multiplexing Raft

• Move shard around Raft clusters

FUTURE WORK
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