
Bring Consensus 
to
Data Replication
QCon 2017

Meng Wang



•Resource sharing

•Openness

•Concurrency

•Scalability

•Fault Tolerance

•Transparency

April 16, 2017 2

DISTRIBUTED SYSTEM



•Resource sharing

•Openness

•Concurrency

•Scalability

•Fault Tolerance

•Transparency

April 16, 2017 3

DISTRIBUTED SYSTEM



April 16, 2017 4

SINGLE POINT OF FAILURE



Adding more replicas

April 16, 2017 5

REDUNDANCY

•scale out the reads
•resilient to machine crashes
•more concurrency



April 16, 2017 6

CHALLENGES

consistency synchronization fence off stale write



Focusing on our four 9s’ availability

April 16, 2017 7

OUR FOCUS

Availability % Downtime per year Downtime per month Downtime per week Downtime per day

99% (“two nines”) 3.65 days 7.20 hours 1.68 hours 14.4 minutes

99.9% (“three nines”) 8.76 hours 43.8 minutes 10.1 minutes 1.44 minutes

99.99% (”four nines”) 52.56 minutes 4.38 minutes 1.01 minutes 8.66 seconds



Take human out of the equation

April 16, 2017 8

OUR FOCUS



OUR FOCUS

April 16, 2017 9

Take human out of the equation

Incident
happens

Page
goes out

Oncall responds
to page

Action taken Start
to recover

Time

Recovered



Take human out of the equation

•System reacts to a subset of failure modes CORRECTLY

•Human makes judgement call in the disastrous scenarios.

OUR FOCUS

April 16, 2017 10



Linearizability

•If a write to a key (which identifies a piece of data) is successfully 

applied, all the subsequent reads via the same key must return the 

same data written by this particular write or some later write;

•If a read of a key returns some data, all subsequent reads via the 

same key must return the same data or some data from some later 

write.

April 16, 2017 11

OUR FOCUS



• Replicated state machine

– A type of active replication

– All replicas receive and process the same sequence of client requests

• Consensus protocol to maintain the replicated log consumed by replicas

– Elect leader automatically

– Tolerate node failure (non-Byzantine failures)

– Maintain consistency among nodes

METHODOLGY

April 16, 2017 12



• Deterministic state machines running on a collection of servers.

• Each state machine computes identical copies of the same data.

• The system can continue to operate even if some servers are down.

REPLICATED STATE MACHINE

April 16, 2017 13



• Log is an append-only and totally ordered abstraction.

• Log replication makes every replica see the exact order of entries.

• If we treat every write to DB as an entry in the log, applying these entries on the same 

starting snapshot in the same order will yield same ending snapshot.

• Replicated log is maintained by consensus protocol.

REPLICATED LOG

April 16, 2017 14



• Each server stores a log containing a series of commands which are 

executed in order by the state machine.

• Each log contains the same commands in the same order.

• State machine is deterministic so each computes the same state and 

has the same sequence of outputs.

Replicated State Machine

April 16, 2017 15



REPLICATED LOG

April 16, 2017 16



• Election Safety
At most one leader can be elected in a given term.

• Leader Append-Only
A leader never overwrites or deletes entries in its log; it only appends new 
entries. 

• Log Matching
If two logs contain an entry with the same index and term, then the logs are 
identical in all entries up through the given index.

• Leader Completeness
If a log entry is committed in a given term, then that entry will be present in the 
logs of the leaders for all higher-numbered terms. 

• State Machine Safety
If a server has applied a log entry at a given index to its state machine, no other 
server will ever apply a different log entry for the same index.

RAFT

April 16, 2017 17



Note that we don’t have a ’global’Raft set-up for the entire system; rather the data is partitioned into multiple partitions each of 

which has its own Raft set-up. Sharding is out of scope of this talk but the overall system architecture looks like the following.

SYSTEM SET-UP

April 16, 2017 18



April 16, 2017 19



April 16, 2017 20



STRONGLY CONSISTENT READ

April 16, 2017 21



STRONGLY CONSISTENT READ

April 16, 2017 22



• Statement Idempotency

• There may be non-idempotent SQL statements. Even if the replicated log is consistent we cannot 

allow same statement to apply twice.

• Our solution: using Raft entry index to construct the GTID

• Parallel Execution

• Raft essentially sequentializes everything which compromises the the parallelism if we would use 

Mysql directly.

• Our solution: parallel execution SQL statements based on the shard that the statement targets at.

• Auto Increment ID

• Mysql’s auto increment ID is NOT transactional so we can NOT have individual replica use its own 

auto increment ids.

• Our solution: use Raft to maintain the cluster-wide auto increment ID.

INTEGRATION WITH MYSQL

April 16, 2017 23



• Observer

A participant which doesn’t vote nor solicit a vote

• Arbitrator

A participant which acts as a voter but will relinquish leadership (if allowed by the 

consensus protocol) if it itself is elected as the leader.

• Leader Lease

• DC awareness/Efficient cross DC data streaming

RAFT EXTENSIONS 

April 16, 2017 24



Within one DC we can achieve tolerance of two nodes being down with the cost of 3 copies of 

data, which is not possible with the vanilla 3-voter set-up.

ARBITRATOR

April 16, 2017 25



CROSS DC SET-UP

April 16, 2017 26

Leader and its majority are 

in the same DC

Leader and its majority are 

in DIFFERENT DCs.

Requester and leader are in 

the same DC

Intra-dc latency one xdc roundtrip

Requester and leader are in 

DIFFERENT DCs

one xdc roundtrip two xdc roundtrips



SHARD SPLITTING

April 16, 2017 27

Extending capacity??



SHARD SPLITTING

April 16, 2017 28

Split original shard into shard 1 and shard 2

•Very short ‘downtime’, i.e. write failures

•No need to stop the traffic

•Split is idempotent



Coordinated Transaction among Replicas

• Cross-shard transactional update

Multiplexing Raft

• Move shard around Raft clusters

FUTURE WORK

April 16, 2017 29



Mitesh konjeti

THE TEAM

SHAMIM MOHAMED

HIMANK CHAUDHARY

SCOTT CEDERBERG

LI LI

MENG WANG

https://www.uber.com/careers/



On behalf of Uber Storage Platform

THANK YOU


