
WHAT’S NEXT IN CLOUD APP
DEVELOPMENT

BORIS SCHOLL

VP ENGINEERING- ORACLE CLOUD

WHO AM I?

• 18+ YEARS EXPERIENCE IN SOFTWARE DEVELOPMENT

• WORKING ON CLOUD SERVICES FOR ABOUT 8 YEARS

• FOCUSING ON PATTERNS FOR LARGE SCALE CLOUD SOLUTIONS AND WORKING DISTRIBUTED

SYSTEMS

• LEADING ENGINEERING FOR NEXT GEN MICROSERVICES PLATFORM @ORACLE

• AUTHOR OF BOOKS AND ARTICLES ON CLOUD DEVELOPMENT AND MICROSERVICES

• LIVE IN SEATTLE WITH MY FAMILY AND LOVE WAKEBOARDING AND SKIING

WHAT’S HAPPENING RIGHT NOW

Hysterix,

Archaius

Ribbon

…

Tech evolution is accelerating

JOURNEY TO MICROSERVICES AND SERVERLESS

FaaS/Serverless

Monolith
Centralized data

Microservices
Decentralized dataWell understood

development

patterns

Cloud

Monolith
Centralized data

Dynamic Scale

New App Dev

patterns, IPC etc.

Cool new stuff, wait

OMG it’s distributed

computing

What’s

that?

FAST EMERGING CLOUD DEPLOYMENT ARCHITECTURE
FOR MICROSERVICES CIRCA 2017

6

Cloud

Server

Today

Swarm

Kubernetes

Mesos

12 FACTOR - MANIFESTO FOR CLOUD APPS

7

I. Codebase
One codebase tracked in revision control, many deploys
II. Dependencies
Explicitly declare and isolate dependencies
III. Config
Store config in the environment
IV. Backing services
Treat backing services as attached resources
V. Build, release, run
Strictly separate build and run stages
VI. Processes
Execute the app as one or more stateless processes
VII. Port binding
Export services via port binding
VIII. Concurrency
Scale out via the process model
IX. Disposability
Maximize robustness with fast startup and graceful shutdown
X. Dev/prod parity
Keep development, staging, and production as similar as possible
XI. Logs
Treat logs as event streams
XII. Admin processes
Run admin/management tasks as one-off processes

https://12factor.net/codebase
https://12factor.net/dependencies
https://12factor.net/config
https://12factor.net/backing-services
https://12factor.net/build-release-run
https://12factor.net/processes
https://12factor.net/port-binding
https://12factor.net/concurrency
https://12factor.net/disposability
https://12factor.net/dev-prod-parity
https://12factor.net/logs
https://12factor.net/admin-processes

MICROSERVICES, CONTAINERS AND ORCHESTRATORS
HOW DOES IT HELP DEVELOPERS?

• AUTONOMOUS SERVICES

• SMALL AUTONOMOUS TEAMS

• FAST DELIVERY

• USE THE BEST TECHNOLOGY FOR THE PROBLEM

• IMMUTABLE ENVIRONMENT

• FAST BOOT UP TIME

• ETC…...

MICROSERVICES, CONTAINERS AND ORCHESTRATORS –
BENEFITS FOR DEVELOPERS

A B C D A

BC

D

Cluster
AB A

Dev Job

COMMON THINGS DEVELOPERS NEED TO CONSIDER
FOR MICROSERVICES

Resiliency Idempotency

Configuration

Stateless Compute
Gateway

IPC Patterns

Event Sourcing

Async

Serialization

CQRS Transaction log tailing

Distributed Tracing

Autoscaling

11

11

MONOLITH TO MICROSERVICES

Middleware

Module 1 Module 2 Module N

Datastore

Service

New Module

Datastore

Existing Application New Service

Implemented as Microservice

Facade

• New services or existing
components are implemented as
microservices

• The façade routes user requests to
the correct application

• Over time more and more features
are moved to the new architecture

CI/CD MICROSERVICES

1

2

EACH SERVICE HAS ITS OWN CI/CD PIPELINE

Datastore

Service

Datastore

Service

Datastore

Container

registry

CI/CD
Per service

Profile Service

Frontend Service

Order Service

Profile Service

Frontend Service

Order Service

WHAT IF…

• ….YOU COULD BREAK DOWN THE FUNCTIONALITY EVEN FURTHER?

• SAY THE MICROSERVICE IMPLEMENTS FUNCTIONALITY THAT REALLY ONLY NEED TO DO A JOB AND

BE DONE

• ….YOU JUST WANT TO SUBMIT THE CODE FOR IT AND HAVE IT REACT TO AN EVENT?

• ….YOU COULD INVOKE A FUNCTION EVEN FASTER THAN A CONTAINER BOOT?

*Credit to AWS

SERVERLESS MANIFESTO*

• FUNCTION ARE THE UNIT OF DEPLOYMENT AND SCALING.

• NO MACHINES, VMS, OR CONTAINERS VISIBLE IN THE PROGRAMMING MODEL.

• PERMANENT STORAGE LIVES ELSEWHERE.

• SCALES PER REQUEST; USERS CANNOT OVER- OR UNDER-PROVISION CAPACITY.

• NEVER PAY FOR IDLE (NO COLD SERVERS/CONTAINERS OR THEIR COSTS).

• IMPLICITLY FAULT-TOLERANT BECAUSE FUNCTIONS CAN RUN ANYWHERE.

• BYOC - BRING YOUR OWN CODE.

• METRICS AND LOGGING ARE A UNIVERSAL RIGHT.

*Credit to AWS

SERVERLESS LANSDCAPE

More Control Less Control

Functions

F(x)

BYOC – Bring your own container BYOC – Bring your own code

SERVERLESS APPLICATIONS

Function fktA

<HTTP Put/Get Event>

Function fktB

Function fktC

api/fktA

api/fktB

Gateway

Dev Job

COMMON THINGS DEVELOPERS NEED TO CONSIDER FOR
SERVERLESS

• THERE ARE STILL THINGS DEVELOPERS/OPS PERSONA NEED TO HANDLE

• DEPLOYMENT, SECURITY, MONITORING ETC.

• STATELESS COMPUTE

• NONE OF THE IN-PROCESS OR HOST STATE THAT YOU CREATE WILL BE AVAILABLE

TO ANY SUBSEQUENT INVOCATION

• MANY MICROSERVICES PATTERNS ARE STILL RELEVANT

• IDEMPOTENCY

• DISTRIBUTED TRACING

• MESSAGING PATTERNS

18

MICROSERVICES AND FUNCTIONS

Microservice

Microservice Architecture with FaaS

Microservice Microservice

Function
Microservice

UI

Independent Services and Functions

Single

Deployment

Entity

Microservice

Microservice
UI

Microservice

Microservice
UI

Microservice Architecture

THE EMERGING EVENT DRIVEN CLOUD

Cloud as the Event Hub

FunctionFunction Function Function Function

<Kafka Event>

Function

PaaSIaaS SaaS

Microservice

<DB Event> <HTTP Put/Get Event> <SaaS Event> <IaaS Event>

…

ARCHITECTURE SUPPORTING EVENT DRIVEN CLOUD
WITH MICROSERVICES

20

HTTP
Put/Get

Kafka
Events

Storage
PUT

DB Event …

Event Sources

IaaS

Kubernetes

Java Java

Java Java

Java

Java

Node

Node

Node

Node

PHP

Go

Function Runtime Pool

f(x) f(x) f(x) f(x) f(x) f(x)

Microservices

ScvA ScvB ScvC

• ONE PLATFORM SUPPORTING BOTH

FUNCTIONS AND CONTAINERIZED

MICROSERVICES

HOW CAN WE HELP JAVA DEVELOPERS?
USE AND INNOVATE WITH THE BEST OF WHAT HAS EMERGED IN THE LAST 5 YEARS

21

JAX-RS, CDI, …

Hysterix,

Archaius

Ribbon

…

Leverage Key

Parts of

Java EE

Learn from/with

Open Source

Leverage Proven

Deployment

Architectures

…

SO WHAT PROGRAMMING MODEL DO WE NEED?

22

• A PROGRAMMING MODEL THAT WORKS FOR BOTH MICROSERVICES AND SERVERLESS.

• SUPPORTING ALL PATTERNS NEEDED

• HELPING WITH DECENTRALIZED DATA

• HELPING WITH SECURITY

• SUPPORTING MODERN PARADIGMS, E.G. REACTIVE ETC

• SELF TUNING RUNTIME

• OPTIMIZE BASED ON RUNTIME BEHAVIOR

CONTINUOUS INTEGRATION AND DELIVERY
CI/CD SYSTEM THAT WORKS FOR BOTH

23

Git

Build Push to Registry

PushTest

Deploy to Scheduler

Deploy

Registry

OSS CLI Pipeline/Build Console

Workflow Automation

Container Cloud

ORACLE CLOUD DEV PLATFORM
MICROSERVICES, FUNCTIONS AND JAVA

24

Microservice/Function

Framework

Devops Automation
CICD for Docker

Container Cloud
Container Centric Applications

API Management

Microservices

Functions

Kubernetes

Container

Service

Management Cloud
Ops/Diagnostics

IT

Analytics

Logs

APMDiagnostics

SUMMARY

25

• SERVERLESS IS GAINING MORE AND MORE TRACTION

• IT’S NOT A ONE SIZE FITS ALL WORLD

• CERTAIN DEVELOPMENT PATTERNS STILL APPLY TO FAAS

• THE NEW HYBRID ARCHITECTURES WILL BE MICROSERVICES WITH FAAS

• EVENT DRIVEN CLOUD WILL BE THE NEW NORMAL

• JAVA IS THE LANGUAGE THAT MAKES IT EASY FOR DEVELOPERS TO BUILD MICROSERVICES,

FUNCTIONS OR HYBRID APPLICATIONS

