Introduction to Apache Beam

Some of the slides (the really nice ones!) were contributed by Frances Perry & Tyler Akidau, April 2016

About me

Software engineer @PayPal, working on streaming data processing.

PMC member, committer @ApacheBeam, Spark runner lead.

3

“A unified programming model for batch and
streaming data processing, that can be executed
on various processing engines”

What's in the box?

e SDKs for writing Beam pipelines - Java and Python

e The Beam Model: / Where / When / How

e Runners for existing distributed processing backends
- Apache Apex
- Apache Flink
- Apache Spark

- Google Cloud Dataflow

- Direct (in-process) runner for testing

The Beam Pipeline

The Beam pipeline: overview

Input

Output

1/0

The Beam pipeline: I10s

l[: [)) l[:
|nput % OUtpUt
J J

Pipeline 10s: bounded source

pipeline
.apply("ReadlLines", readText)
.apply(“CountWords”,)
.apply(“WriteFormatted”, writeText);

*Some code snippets were shortened or elided for clarity.

Pipeline 10s: unbounded source

'KafkaIO Read<Integer, String> readKafka =
KafkaIO <Integer, String>read().withTopic(“my_input topic”)..

'KafkaIO Write<Integer, String> writeKafka =
KafkaIO <Integer, String>write().withTopic(“my output topic”)...

pipeline
.apply("ReadlLines", readKafka.values())
.apply(“CountWords”,)

.apply(“WriteFormatted”, writeKafka.values());

*Some code snippets were shortened or elided for clarity.

Supported 10s (April 2017)

HDFS

HBase

JDBC
MongoDB
Elasticsearch

Eafka_ @
NS =

MQTT
Google - GCS, BigQuery, BigTable, Datastore

@ HIES]

Most of this was done in little over a year, thanks to the Beam community!

Transformations

12

The Beam pipeline: transfomations

=) =)

=)

SDK core primitives

SDK transformations are mostly built on top of the following core
primitives:
e ParDo - executing the user's DoFn function ~ map/flatmap.
e GroupByKey - grouping by key and window.
e Window.into - applying a window to a PCollection.
e Flatten.pCollections - union one or more PCollections into a single
PCollection.

CountWords

pipeline
.apply("ReadLines", TextIO.Read.from(options.getInputFile()))
.apply(“CountWords”,)

.apply("WriteCounts", TextIO.Write.to(options.getOutput()));

Input ReadLines PCollection CountWords PCollection OfMAASTEX PCollection WriteCounts

*Some code snippets were shortened or elided for clarity.

The CountWords composite

// Convert lines of text into individual words.
PCollection<String> words =
lines.apply(ParDo.of(new ExtractWordsFn()));

// Count the number of times each word occurs.
PCollection<KV<String, Long>> wordCounts =
words.apply(Count.<Stringspertlement());

*Some code snippets were shortened or elided for clarity.

The Beam Model

Processing time vs. event time

The Beam Model: asking the right questions

results are calculated?
Where in event time are results calculated?
When in processing time are results materialized?

How do refinements of results relate?

The Beam Model: is being computed?

PCollection<KV<String, Integer>> scores = input
.apply()s

*Some code snippets were shortened or elided for clarity.

The Beam Model: is being computed?

The Beam Model: Where in event time?

PCollection<KV<String, Integer>> scores = input
.apply(Window.into(FixedWindows.of(Duration.standardMinutes(2)))

.apply();

*Some code snippets were shortened or elided for clarity.

The Beam Model: Where in event time?

The Beam Model: When in processing time?

PCollection<KV<String, Integer>> scores = input
.apply(Window.into(FixedWindows.of(Duration.standardMinutes(2))
.triggering(AtWatermark()))

.apply();

*Some code snippets were shortened or elided for clarity.

The Beam Model: When in processing time?

The Beam Model: How do refinements relate?

PCollection<KV<String, Integer>> scores = input
.apply(Window.into(FixedWindows.of(Duration.standardMinutes(2))
.triggering(AtWatermark()
.withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))
.withLateFirings(AtCount(1)))
.accumulatingFiredPanes())

.apply()5

*Some code snippets were shortened or elided for clarity.

The Beam Model: How do refinements relate?

Customizing Where When How

2 3 4
Windowed Streaming Streaming
Batch + Accumulation

For more information see https://beam.apache.org/get-started/mobile-gaming-example/

https://beam.apache.org/get-started/mobile-gaming-example/

The Beam streaming pipeline

pipeline
.apply(KafkalO.read().withTopic(“team _points topic”))
.apply(Window.into(FixedWindows.of(Duration.standardMinutes(2))
.triggering(AtWatermark()
.withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))
.withLateFirings(AtCount(1)))
.accumulatingFiredPanes())

.apply()
.apply(KafkaIO.write().withTopic(“team_points topic”))

*Some code snippets were shortened or elided for clarity.

Portability

Direct runner

PipelineOptions options = PipelineOptionsFactory.create();
Pipeline pipeline = Pipeline.create(options);

pipeline
.apply("ReadLines", TextIO.Read.from(options.getInputFile()))
.apply(“CountWords”, new CountWords())
.apply(“FormatAsText”, MapElements.via(new FormatAsTextFn()))
.apply("WriteCounts", TextIO.Write.to(options.getOutput()));

*Some code snippets were shortened or elided for clarity.

Flink runner

FlinkPipelineOptions flinkPipelineOptions =
PipelineOptionsFactory.as(FlinkPipelineOptions.class);
flinkPipelineOptions.setRunner(FlinkRunner.class);
Pipeline pipeline = Pipeline.create(flinkPipelineOptions);

pipeline
.apply("ReadLines", TextIO.Read.from(options.getInputFile()))
.apply(“CountWords”, new CountWords())
.apply(“FormatAsText”, MapElements.via(new FormatAsTextFn()))
.apply("WriteCounts", TextIO.Write.to(options.getOutput()));

*Some code snippets were shortened or elided for clarity.

Spark runner

SparkPipelineOptions sparkPipelineOptions =
PipelineOptionsFactory.as(SparkPipelineOptions.class);
sparkPipelineOptions.setRunner(SparkRunner.class);
Pipeline pipeline = Pipeline.create(sparkPipelineOptions);

pipeline
.apply("ReadLines", TextIO.Read.from(options.getInputFile()))
.apply(“CountWords”, new CountWords())
.apply(“FormatAsText”, MapElements.via(new FormatAsTextFn()))
.apply("WriteCounts", TextIO.Write.to(options.getOutput()));

*Some code snippets were shortened or elided for clarity.

Spark runner

SparkPipelineOptions sparkPipelineOptions =
PipelineOptionsFactory.as(SparkPipelineOptions.class);
sparkPipelineOptions.setRunner(SparkRunner.class);
sparkPipelineOptions.setSparkMaster(“spark://IP:PORT”);
Pipeline pipeline = Pipeline.create(sparkPipelineOptions);
pipeline
.apply("ReadLines", TextIO.Read.from(options.getInputFile()))
.apply(“CountWords”, new CountWords())
.apply(“FormatAsText”, MapElements.via(new FormatAsTextFn()))
.apply("WriteCounts", TextIO.Write.to(options.getOutput()));

*Some code snippets were shortened or elided for clarity.

The Apache Beam Vision

The Apache Beam vision

1.

2.

End users: who want to write
pipelines in a language that's familiar.

SDK writers: who want to make Beam
concepts available in new languages.

Runner writers: who have a
distributed processing environment
and want to support Beam pipelines

Other

BEEIINEVE] Languages

Beam Model: Pipeline Construction

Apache Cloud Apache Apache
Flink Dataflow Spark Apex

"’

Beam Model: Fn Runners

Execution Execution Execution

Learn morel!

Apache Beam
https://beam.apache.org

The World Beyond Batch 101 & 102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https.//www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

Join the mailing lists!
user-subscribe@beam.apache.org
dev-subscribe@beam.apache.org

Follow @ApacheBeam on Twitter

https://beam.apache.org
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

Thank you!

