
1

Introduction to Apache Beam

Some of the slides (the really nice ones!) were contributed by Frances Perry & Tyler Akidau, April 2016

2

About me

Software engineer @PayPal, working on streaming data processing.

PMC member, committer @ApacheBeam, Spark runner lead.

3

“A unified programming model for batch and
streaming data processing, that can be executed

on various processing engines”

What’s in the box?

● SDKs for writing Beam pipelines -- Java and Python

● The Beam Model: What / Where / When / How

● Runners for existing distributed processing backends

▪ Apache Apex

▪ Apache Flink

▪ Apache Spark

▪ Google Cloud Dataflow

▪ Direct (in-process) runner for testing

5

The Beam Pipeline

6

The Beam pipeline: overview

Input
Transform PCollection Transform PCollection Transform

Output

7

I/O

8

The Beam pipeline: IOs

Input
Transform PCollection Transform PCollection Transform

Output

Pipeline IOs: bounded source

pipeline

.apply("ReadLines", readText)

.apply(“CountWords”, new CountWords())

.apply(“FormatAsText”, MapElements.via(new FormatAsTextFn()))

.apply(“WriteFormatted”, writeText);

TextIO.Read.Bound readText = TextIO.Read.from(“path/to/input.txt”);

TextIO.Write.Bound writeText = TextIO.Write.to(“path/to/output”);

*Some code snippets were shortened or elided for clarity.

Pipeline IOs: unbounded source

pipeline

.apply("ReadLines", readKafka.values())

.apply(“CountWords”, new CountWords())

.apply(“FormatAsText”, MapElements.via(new FormatAsTextFn()))

.apply(“WriteFormatted”, writeKafka.values());

KafkaIO.Read<Integer, String> readKafka =

KafkaIO.<Integer, String>read().withTopic(“my_input_topic”)...

KafkaIO.Write<Integer, String> writeKafka =

KafkaIO.<Integer, String>write().withTopic(“my_output_topic”)...

*Some code snippets were shortened or elided for clarity.

Supported IOs (April 2017)

● HDFS
● HBase
● JDBC
● MongoDB
● Elasticsearch
● Kafka
● Kinesis
● JMS
● MQTT
● Google - GCS, BigQuery, BigTable, Datastore

Most of this was done in little over a year, thanks to the Beam community!

12

Transformations

13

The Beam pipeline: transfomations

Input
Transform PCollection Transform PCollection Transform

Output

SDK core primitives

SDK transformations are mostly built on top of the following core
primitives:
● ParDo - executing the user’s DoFn function ~ map/flatmap.
● GroupByKey - grouping by key and window.
● Window.into - applying a window to a PCollection.
● Flatten.pCollections - union one or more PCollections into a single

PCollection.

CountWords

pipeline

.apply("ReadLines", TextIO.Read.from(options.getInputFile()))

.apply(“CountWords”, new CountWords())

.apply(“FormatAsText”, MapElements.via(new FormatAsTextFn()))

.apply("WriteCounts", TextIO.Write.to(options.getOutput()));

*Some code snippets were shortened or elided for clarity.

Input
ReadLines PCollection CountWords PCollection

FormatAsTex

t

Output
PCollection WriteCounts

The CountWords composite

// Convert lines of text into individual words.

PCollection<String> words =

lines.apply(ParDo.of(new ExtractWordsFn()));

// Count the number of times each word occurs.

PCollection<KV<String, Long>> wordCounts =

words.apply(Count.<String>perElement());

*Some code snippets were shortened or elided for clarity.

PCollection CountWords PCollection

PCollection ExtractWords PCollection

PCollection CountElemnt PCollection

17

The Beam Model

18

Processing time vs. event time

19

The Beam Model: asking the right questions

What results are calculated?

Where in event time are results calculated?

When in processing time are results materialized?

How do refinements of results relate?

The Beam Model: What is being computed?

PCollection<KV<String, Integer>> scores = input

.apply(Sum.integersPerKey());

*Some code snippets were shortened or elided for clarity.

The Beam Model: What is being computed?

The Beam Model: Where in event time?

PCollection<KV<String, Integer>> scores = input

.apply(Window.into(FixedWindows.of(Duration.standardMinutes(2)))

.apply(Sum.integersPerKey());

*Some code snippets were shortened or elided for clarity.

The Beam Model: Where in event time?

The Beam Model: When in processing time?

PCollection<KV<String, Integer>> scores = input

.apply(Window.into(FixedWindows.of(Duration.standardMinutes(2))

.triggering(AtWatermark()))

.apply(Sum.integersPerKey());

*Some code snippets were shortened or elided for clarity.

The Beam Model: When in processing time?

The Beam Model: How do refinements relate?

PCollection<KV<String, Integer>> scores = input

.apply(Window.into(FixedWindows.of(Duration.standardMinutes(2))

.triggering(AtWatermark()

.withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))

.withLateFirings(AtCount(1)))

.accumulatingFiredPanes())

.apply(Sum.integersPerKey());

*Some code snippets were shortened or elided for clarity.

The Beam Model: How do refinements relate?

28

Customizing What Where When How

3

Streaming

4
Streaming

+ Accumulation

1

Classic

Batch

For more information see https://beam.apache.org/get-started/mobile-gaming-example/

2
Windowed

Batch

https://beam.apache.org/get-started/mobile-gaming-example/

The Beam streaming pipeline

*Some code snippets were shortened or elided for clarity.

pipeline

.apply(KafkaIO.read().withTopic(“team_points_topic”))

.apply(Window.into(FixedWindows.of(Duration.standardMinutes(2))

.triggering(AtWatermark()

.withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))

.withLateFirings(AtCount(1)))

.accumulatingFiredPanes())

.apply(Sum.integersPerKey())

.apply(KafkaIO.write().withTopic(“team_points_topic”))

30

Portability

Direct runner

pipeline

.apply("ReadLines", TextIO.Read.from(options.getInputFile()))

.apply(“CountWords”, new CountWords())

.apply(“FormatAsText”, MapElements.via(new FormatAsTextFn()))

.apply("WriteCounts", TextIO.Write.to(options.getOutput()));

PipelineOptions options = PipelineOptionsFactory.create();

Pipeline pipeline = Pipeline.create(options);

*Some code snippets were shortened or elided for clarity.

Flink runner

pipeline

.apply("ReadLines", TextIO.Read.from(options.getInputFile()))

.apply(“CountWords”, new CountWords())

.apply(“FormatAsText”, MapElements.via(new FormatAsTextFn()))

.apply("WriteCounts", TextIO.Write.to(options.getOutput()));

FlinkPipelineOptions flinkPipelineOptions =

PipelineOptionsFactory.as(FlinkPipelineOptions.class);

flinkPipelineOptions.setRunner(FlinkRunner.class);

Pipeline pipeline = Pipeline.create(flinkPipelineOptions);

*Some code snippets were shortened or elided for clarity.

Spark runner

pipeline

.apply("ReadLines", TextIO.Read.from(options.getInputFile()))

.apply(“CountWords”, new CountWords())

.apply(“FormatAsText”, MapElements.via(new FormatAsTextFn()))

.apply("WriteCounts", TextIO.Write.to(options.getOutput()));

SparkPipelineOptions sparkPipelineOptions =

PipelineOptionsFactory.as(SparkPipelineOptions.class);

sparkPipelineOptions.setRunner(SparkRunner.class);

Pipeline pipeline = Pipeline.create(sparkPipelineOptions);

*Some code snippets were shortened or elided for clarity.

Spark runner

pipeline

.apply("ReadLines", TextIO.Read.from(options.getInputFile()))

.apply(“CountWords”, new CountWords())

.apply(“FormatAsText”, MapElements.via(new FormatAsTextFn()))

.apply("WriteCounts", TextIO.Write.to(options.getOutput()));

SparkPipelineOptions sparkPipelineOptions =

PipelineOptionsFactory.as(SparkPipelineOptions.class);

sparkPipelineOptions.setRunner(SparkRunner.class);

sparkPipelineOptions.setSparkMaster(“spark://IP:PORT”);

Pipeline pipeline = Pipeline.create(sparkPipelineOptions);

*Some code snippets were shortened or elided for clarity.

35

The Apache Beam Vision

36

The Apache Beam vision

1. End users: who want to write
pipelines in a language that’s familiar.

2. SDK writers: who want to make Beam
concepts available in new languages.

3. Runner writers: who have a
distributed processing environment
and want to support Beam pipelines

Beam Model: Fn Runners

Apache
Flink

Apache
Spark

Beam Model: Pipeline Construction

Other
LanguagesBeam Java

Beam
Python

Execution Execution

Cloud
Dataflow

Execution

Apache
Apex

37

Learn more!

Apache Beam
https://beam.apache.org

The World Beyond Batch 101 & 102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

Join the mailing lists!
user-subscribe@beam.apache.org
dev-subscribe@beam.apache.org

Follow @ApacheBeam on Twitter

https://beam.apache.org
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

38

Thank you!

