
@crichardson

A pattern language for 
microservices

Chris Richardson 

Founder of Eventuate.io 
Founder of the original CloudFoundry.com 
Author of POJOs in Action 

   @crichardson 
chris@chrisrichardson.net 
http://microservices.io 
http://eventuate.io 
http://plainoldobjects.com

Copyright  © 2017. Chris Richardson Consulting, Inc. All rights reserved



@crichardson

Presentation goal

Overview of the microservice 
architecture pattern language 

and 
how to use it to architect an 

application



@crichardson

About Chris



@crichardson

About Chris

Consultant  and trainer 
focusing on modern 

application architectures 
including microservices 

(http://www.chrisrichardson.net/)



@crichardson

About Chris

Founder of a startup that is creating  
an open-source/SaaS platform  

that simplifies the development of 
transactional microservices 

(http://eventuate.io)



@crichardson

About Chris

https://www.manning.com/books/microservice-patterns



@crichardson

Agenda

Why microservices? 

Benefits of the microservice architecture 

Microservices != silver bullet 

The microservice pattern language 

Applying the microservice pattern language



@crichardson

Let’s imagine you are 
building an online store

Browser/
Client

SQL 
Database

Review Module

Catalog 
Module

Recommendation 
Module

StoreFrontUI

Order Module

HTML

REST/JSON

Layered and 
modular



@crichardson

Problem: what’s the 
deployment architecture?



@crichardson

Forces

Businesses must innovate 
faster 
⇒ 

Develop more complex, 
higher-quality software faster



@crichardson

Tomcat

Traditional Monolithic 
architecture

Browser/
Client

WAR/EAR

MySQL 
Database

Review Module

Catalog 
Module

Recommendation 
Module

StoreFrontUI

Order Module

HTML
REST/JSON



@crichardson

Simple to …. 

Develop  
Test 

Deploy 
Scale



@crichardson

Successful applications 
have a habit of growing 

⇒ 
Big, complex, monolithic 

applications 



@crichardson

Eventually, agile 
development 

and deployment  
becomes 

impossible 



@crichardson

Requires long-term 
commitment to a 
technology stack



@crichardson

Monolithic hell

Development is slow 

Application is becoming a big ball of mud 

No one fully understands the application 

It’s written in an obsolete technology stack



@crichardson

The microservice architecture 

Loosely coupled services 
organized around  

business capabilities



@crichardson

The Microservice architecture 
tackles complexity through 

modularization



@crichardson

Microservice architecture

Browser

Mobile 
Device

Store 
Front UI

API 
Gateway

Catalog 
Service

Review 
Service

Order 
Service

… 
Service

Catalog 
Database

Review 
Database

Order 
Database

… 
Database

HTML

REST

REST



@crichardson

Agenda

Why microservices? 

Benefits of the microservice architecture 

Microservices != silver bullet 

The microservice pattern language 

Applying the microservice pattern language



@crichardson

Microservices enable 
continuous delivery/deployment

Process: 
Continuous delivery/deployment

Organization:
Small, agile, autonomous, 

cross functional teams 

Architecture: 
Microservice architecture

Enables

Enables Enables

Successful
Software

Development



@crichardson

Smaller, simpler applications

Easier to understand and develop 

Less jar/classpath hell - who needs OSGI?  

Faster to build and deploy 

Reduced startup time



Scales development: develop, deploy 
and scale each service independently

Small, autonomous teams 

Clearly defined 
responsibilities

Catalog 
Service

Review 
Service

Order 
Service

… 
Service

Catalog 
Team

Review 
Team

Order 
Team

… 
Team

Responsible 
for



@crichardson

Easier to scale



@crichardson

Improves fault isolation 



@crichardson

Easily evolve your technology 
stack

... and fail safely



@crichardson

Agenda

Why microservices? 

Benefits of the microservice architecture 

Microservices != silver bullet 

The microservice pattern language 

Applying the microservice pattern language



@crichardson

No silver bullets

http://en.wikipedia.org/wiki/Fred_Brooks



@crichardson

Complexity

http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html



@crichardson

Complexity of developing a 
distributed system



@crichardson

Multiple databases  
& 

Transaction management
Must use event-driven 
eventual consistency



@crichardson

Complexity of testing a 
distributed system



@crichardson

Complexity of deploying and 
operating a distributed system

You need a lot of 
automation: VM/container 

orchestration or PaaS



@crichardson

Developing and deploying features that 
span multiple services requires careful 
coordination 



@crichardson

Agenda

Why microservices? 

Benefits of the microservice architecture 

Microservices != silver bullet 

The microservice pattern language 

Applying the microservice pattern language



@crichardson

Are microservices a good fit 
for my application?



@crichardson

When using microservices:
How to decompose an application into services?

How to deploy an application’s services?
How to handle cross cutting concerns?

Which communication mechanisms to use?

How do external clients communicate with the services?

How does a client discover the network location of a service instance?

How to prevent a network or service failure from cascading to other services?

How to maintain data consistency and implement queries?

How to make testing easier?

How to understand the behavior of an application and troubleshoot problems?

How to implement a UI screen or page that displays data from multiple services?



@crichardson

Microservice pattern language 
= 

collection of patterns  
that solve these  

architecture, design, development and 
operational problems 



@crichardson

What’s a pattern?

Reusable solution  
to a problem  

occurring  
in a particular context



@crichardson

The structure of a pattern

Resulting context

aka the situation

Name

Context

Problem

Related patterns

(conflicting) issues 
etc to address Forces

Solution



@crichardson

Resulting context

Benefits

Drawbacks

Issues to resolve



@crichardson

Related patterns

Alternative pattern: 
Different solution to same problem

Successor pattern: 
Solves problem introduced by this pattern



@crichardsonMicroservice patterns

Communication patterns

Core

Cross-cutting concerns Security

Deployment

Maintaining data consistency

Database architecture

External API

Reliability

Discovery

Communication style

Testing

Observability

UI 

Decomposition 

API gateway

Client-side discovery

Server-side 
discovery

Service registry

Self registration

3rd party registration

Multiple Services 
per host

Single Service per 
Host

Service-per-
Container

Service-per-VM

Messaging Remote Procedure
Invocation

Database per 
Service

Event-driven 
architectureShared 

database

Microservice 
Chassis

Backend for front end

Event 
sourcing

Transaction 
log tailing

Database 
triggers

Application 
events

Monolithic 
architecture

Microservice 
architecture

CQRS

Motivating
Pattern

Solution
Pattern

Solution A Solution B

General Specific

Serverless 
deployment

Circuit BreakerAccess Token

Domain-specific

Externalized 
configuration

Service Integration 
Contract Test

Service 
Component Test

Exception 
tracking

Distributed 
tracing

Audit logging Application 
metrics

Log 
aggregation

Health check 
API

Service deployment 
platform

Server-side page 
fragment 

composition

Client-side  UI 
composition

Decompose by
business capability

Decompose by
subdomain

Application patterns

Infrastructure patterns

Application Infrastructure patterns

Microservices pattern language: http://microservices.io



@crichardsonMicroservice patterns

Communication patterns

Core

Cross-cutting concerns Security

Deployment

Maintaining data consistency

Database architecture

External API

Reliability

Discovery

Communication style

Testing

Observability

UI 

Decomposition 

API gateway

Client-side discovery

Server-side 
discovery

Service registry

Self registration

3rd party registration

Multiple Services 
per host

Single Service per 
Host

Service-per-
Container

Service-per-VM

Messaging Remote Procedure
Invocation

Database per 
Service

Event-driven 
architectureShared 

database

Microservice 
Chassis

Backend for front end

Event 
sourcing

Transaction 
log tailing

Database 
triggers

Application 
events

Monolithic 
architecture

Microservice 
architecture

CQRS

Motivating
Pattern

Solution
Pattern

Solution A Solution B

General Specific

Serverless 
deployment

Circuit BreakerAccess Token

Domain-specific

Externalized 
configuration

Service Integration 
Contract Test

Service 
Component Test

Exception 
tracking

Distributed 
tracing

Audit logging Application 
metrics

Log 
aggregation

Health check 
API

Service deployment 
platform

Server-side page 
fragment 

composition

Client-side  UI 
composition

Decompose by
business capability

Decompose by
subdomain

Application patterns

Infrastructure patterns

Application Infrastructure patterns

Microservices pattern language: http://microservices.io

Base 
Technical 

Architecture

Dev/Ops 
Concerns

Decomposition



@crichardson

Agenda

Why microservices? 

Benefits of the microservice architecture 

Microservices != silver bullet 

The microservice pattern language 

Applying the microservice pattern language



@crichardson

The pattern language guides you 
when developing an architecture

What architectural decisions you must make 

For each decision: 

Available options 

Trade-offs of each option



Issue: What’s the deployment 
architecture?
Forces 

Maintainability 

Deployability 

Testability 

Extensibility 

…

Monolithic 
architecture

Microservice 
architecture

Single deployable/
executable OR  

Tightly coupled services

Multiple loosely coupled 
services



Issue: How to decompose an 
application into services?

Forces 

Stability 

Cohesive 

Loosely coupled 

Not too large

Decompose by
business capability

Decompose by
subdomain

Organize around 
business capabilities

Organize around DDD 
subdomains



Issue: How to deploy an 
application’s services?

Multiple Services 
per host

Single Service per 
Host

Service-per-
Container

Service-per-VM

Serverless 
deployment

Service deployment 
platform

Forces 

Multiple languages 

Isolated 

Constrained 

Monitor-able 

Reliable 

Efficient



@crichardson

Issue: How do services 
communicate?

Messaging Remote Procedure
Invocation

Domain-specific

Forces 

Services must 
communicate 

Usually processes on 
different machines 

…



@crichardson

Issue: How to discover a service 
instance’s network location?

Client-side discovery

Server-side 
discovery

Service registry

Self registration

3rd party registration

Forces 

Client needs IP address of 
service instance 

Dynamic IP addresses 

Dynamically provisioned 
instances



@crichardson

Issue: How to handle cross 
cutting concerns?

Microservice 
Chassis

Forces 

Every service must 
implement logging; 
externalize configuration; 
health check endpoint; 
metrics; …



@crichardson

Issue: how to maintain data 
consistency?

Event-driven 
architecture

Event 
sourcing

Transaction 
log tailing

Database 
triggers

Application 
events

Context 

• Each service has its own 
database 

• Data is private to a service 

Forces 

Transactional data consistency 
must be maintained across 
multiple services 

2PC is not an option



@crichardson

Issue: how to perform 
queries?

CQRS

Context 

Each service has its own 
database 

Forces 

Queries must join data 
from multiple services 

Data is private to a service
Maintain query views by 
subscribing to events



@crichardson

Issue: how to monitor the 
behavior of your application?

Exception 
tracking

Distributed 
tracing

Audit logging Application 
metrics

Log 
aggregation

Health check 
API



@crichardson

Summary

The monolithic architecture is a good choice for small/simple 
applications 

Use the microservice architecture for large/complex 
applications 

Micro service architecture != silver bullet 

Use the microservice architecture pattern language to guide 
your decision making



@crichardson

@crichardson chris@chrisrichardson.net

http://learnmicroservices.io

Thank you!


