
Hunting CVEs for fun and profit
Flanker

#whoami

• Flanker
– Senior Security Researcher at KeenLab

– Apple/Android/Chrome CVE hunter (“frequent
creditor”)

– Speaker at BlackHat USA/ASIA, DEFCON, RECON,
CanSecWest, HITCON, QMSS

– Pwn2Own 2016/ Mobile Pwn2Own 2016 winner

– Recognized researcher of Android Security Reward
Program

I’ve been working on…

• Kernel fuzzing/auditing

• Privilege Escalation in Userspace

• Sandbox escapes

• Browser fuzzing/exploitation

• Android/macOS/iOS

Agenda

• Browser fuzzing/exploitation

• Sandbox escapes

• Privilege escalation

• Kernel code execution

Lifetime of a complete exploit chain

• Remote vector is usually browser

• Escalate the sandbox via

– Broker IPC calls

– Userspace privileged components

– Kernel

• Privilege Escalation

THE ENTRANCE – JAVASCRIPT ENGINES

Chain in Mobile Pwn2Own 2016 Android Category

V8 Javascript Engine

• Widely known and used

• Runtime optimization and JIT to machine code

– Strongtalk

– Crankshaft

– Turbofan

Vulnerabilities in V8 showcase

• CVE-2016-1646

– Property redefinition

• CVE-2016-5198

– JIT optimization out-of-bound

Case study: CVE-2016-1646
• V8 Array.concat redefinition out-of-bounds in Pwn2Own 2016 by KeenLab

Case study: CVE-2016-1646

CVE-2016-5198 – oob in Deoptimization

• Eager Deoptimization
– Usually seen in function argument checks
– Bail out to interpreter mode immediately

• Lazy Deoptimization
– Usually seen on global object access
– Who changes the object is responsible for patching

following users
• What if itself is also JITed?

Exploiting CVE-2016-5198

• OOB write chars field of null string to leak
ArrayBuffer address

• Overwrite ArrayBuffer backing_store to leak
Function code address

• Overwrite ArrayBuffer backing_store with
Function code address

• Write shellcode to ArrayBuffer and exec!

How to fuzz Javascript engines?

• Jsfunfuzz can be a good start

• Collect samples

– Split, mutate and join

• New features, new vulnerabilities

– Callbacks, protos, …

– Intentionally generate them

BREAKING SANDBOX LIKE A BOSS
Chain in Pwn2Own 2016 OSX category

Sandbox
• In modern operating systems, a “Sandbox” is a

mechanism to run code in a constrained
environment.

• A Sandbox specifies which resources this code
has access to

• Shift of approach/complementary approach:
– Let’s confine software, so even if it’s compromised it

has restricted access to the system.

Structure of the Safari Sandbox

• The UI Process is the parent and in
charge of managing the other processes

• Web Process runs webkit/javascript
engines

Image courtesy of:
https://trac.webkit.org/attachment/
wiki/WebKit2/webkit2-stack.png

The anatomy of Chrome sandbox

• All untrusted code runs in Target process

• Relay most operations to Broker

• Try best to

– lock down the capabilities of renderer

• Even renderer is compromised

– Access is still strictly prohibited

• GPU process have higher level access

– Than normal sandbox process

How to escape the sandbox?

• To beat your enemies, know them first

• Sandbox profiles

Apple graphics architecture

Sandboxed App WindowServer Service

User land

Kernel
land

User land
Graphics

IGAccelSurface IGAccelGLContext IGAccelVideoContext…

IOAcceleratorFamily
2

Nvidia Graphics
Implementation

Intel Graphics
Implementation

• On macOS, stored in
/System/Library/Frameworks/We-
bKit.framework/Versions/A/Resources/com
.apple.WebProcess.sb

• On iOS, binary file embed in kernel:
– Sandbox_toolkit：

https://github.com/sektioneins/sandbox_toolkit

• What’s in sandbox profile:
– File opration
– IPC
– IOKit
– Sharedmem
– Etc.

https://github.com/sektioneins/sandbox_toolkit

Escaping the Safari sandbox

• Fuzzing Graphics IOKit calls

– Actively generate

– Passive injection

– Coverage guidance – instrument the xnu kernel

• Fuzzing XPCs in privileged userspace daemons

– Yes windowserver I’m talking about you

Python/Go wrappers for fuzzing

• Easy SMT solvers integration

• Feasible strategy evolution

• Import kitlib

CVE-2016-1815 – ‘Blit’zard - our P2O bug

• This bug lies in IOAcceleratorFamily
• A vector write goes out-of-bound under certain carefully prepared

situations (8 IOkit calls) in a newly allocated kalloc.48 block
• Finally goes into IGVector::add lead to OOB write
• Arbitrary-write-but-content-limited

Heap sprayHeap spray

Evolution of the Android Sandbox (old time)

Evolution of the Android Sandbox (current state)

Chromium Android Sandbox (1)
• On Android, Chromium leverages the isolatedProcess feature to

implement its sandbox.

Chromium Android Sandbox (2)

• Very restrictive Sandbox
profile

• No data file access at all
• Only 2 IPC services
• Minimum interaction

with sockets
• No graphic drivers access

• ServiceManager also
restricts implicit service
export

Per interface constraint
• Isolated_app inherits from app_domain (app.te)

• Only interfaces without enforceNotIsolatedCaller can be invoked

Userspace escapes in Android

• Broker IPCs

• Binder calls to privileged daemons

– System server

bool RenderWidgetHostViewAndroid::OnMessageReceived(
const IPC::Message& message) {
//…
bool handled = true;
IPC_BEGIN_MESSAGE_MAP(RenderWidgetHostViewAndroid, message)
IPC_MESSAGE_HANDLER(ViewHostMsg_StartContentIntent, OnStartContentIntent)
IPC_MESSAGE_HANDLER(ViewHostMsg_SmartClipDataExtracted,
OnSmartClipDataExtracted)
IPC_MESSAGE_HANDLER(ViewHostMsg_ShowUnhandledTapUIIfNeeded,
OnShowUnhandledTapUIIfNeeded)
IPC_MESSAGE_UNHANDLED(handled = false)
IPC_END_MESSAGE_MAP()
return handled;
}

public void onStartContentIntent(Context context, String intentUrl, boolean isMainFrame) {
Intent intent; // Perform generic parsing of the URI to turn it into an Intent.

try {
intent = Intent.parseUri(intentUrl, Intent.URI_INTENT_SCHEME);

String scheme = intent.getScheme();
intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

} catch (Exception ex) {
Log.w(TAG, "Bad URI %s", intentUrl, ex); return;

}
try {

context.startActivity(intent);
} catch (ActivityNotFoundException ex) {
}
}

CVE-2016-5197
Arbitrary intent start in broker

IPC sandbox escapes

• See that holy Google Drive

• Have full access to Google account

• Trusted by Google Play
– To “install” app

• Blindly opens any intent-controlled URL

• Pwn it to jump from isolated to untrusted
– Plus App installation ability!

GO DEEPER
Privilege escalations

Fuzzing daemons with AFL+ASAN

Coverage guided kernel fuzzing

• GCC6 fully supports instrumentation in each
basic block

• Coverage exported via /sys/kernel/debug/kcov

• Only samples increasing coverage survives

• KASAN instrumentation

• Go integration

Some bugs can be reached from sandbox

• CVE-2015-1805

• Race-condition in pipe_read

– Waste for qiku though

Majority kernel bugs are not

• Example: CVE-2015-6637 for Qiku phones
rooting

– Driver protected by SELinux policy

– Userspace escalation come to rescue

• CVE-2016-3832

• Credit also goes to James & nforest

CVE-2015-6637 in /dev/misc-sd
if(msdc_ctl->total_size <= 0) return -EINVAL;
host_ctl = mtk_msdc_host[msdc_ctl->host_num]; <== Bug here
BUG_ON(!host_ctl); BUG_ON(!host_ctl->mmc);

if (host->ops->enable && !stop && host->claim_cnt == 1)
host->ops->enable(host); <== Code execution

Who can access misc-sd?

• Em_srv is a system executable, holds em_svr
context

• Listens on @EngineerModeServer socket

• Execute command
cat qiku_av.txt | grep "ALLOW " | grep ">misc_sd_device" | grep "ioctl"
[AV] 4378: ALLOW factory-->misc_sd_device (chr_file) [ioctl read open]
[AV] 7554: ALLOW em_svr-->misc_sd_device (chr_file) [ioctl read open]
[AV] 10552: ALLOW unconfineddomain-->misc_sd_device (file) [append create write ... [AV] 10556: ALLOW
recovery-->misc_sd_device (chr_file) [append create execute ... [AV] 10559: ALLOW unconfineddomain--
>misc_sd_device (chr_file) [append create ... [AV] 10562: ALLOW vold-->misc_sd_device (chr_file)
[ioctl read open]
[AV] 12202: ALLOW mmc_ffu-->misc_sd_device (chr_file) [ioctl read open]

ps -Z | grep "em_svr"
u:r:em_svr:s0 system 619 1 /system/bin/em_svr

How can it access misc-sd?

• SELinux forbids em_srv from running /data
executable directly

• But /system/bin/toolbox keeps ioctl gadget for
our interest

cat qiku_av.txt | grep "ALLOW " | grep "em_svr-->" | grep "execute"
[AV] 4418: ALLOW em_svr-->system_file (file) [execute_no_trans]
[AV] 5393: ALLOW em_svr-->shell_exec (file) [execute read execute_no_trans open] [AV]
6076: ALLOW em_svr-->thermal_manager_exec (file) [execute getattr read ... [AV] 7135:
ALLOW em_svr-->em_svr_exec (file) [execute getattr read entrypoint open]

Who can access em_srv?

• Radio uid

• But how?

1.# cat qiku_av.txt | grep "ALLOW " | grep ">em_svr" | grep "connect"
[AV] 2244: ALLOW radio-->em_svr (unix_stream_socket) [connectto]
[AV] 8567: ALLOW em_svr-->em_svr (unix_stream_socket) [append bind
connect ... [AV] 8571: ALLOW em_svr-->em_svr (unix_dgram_socket)
[append bind connect ...

Do you have radio contact?

• Get system_server context
– Transient to radio

• Or:
– bindBackupAgent provides a way for us to get

arbitrary context/uid from system_app context

– How to get system_app uid?
• Too easy on MTK phones..

Conclusion

• Fuzzing is proved useful against complex
system with coverage guidance
– Domain knowledge lead to better result

• Mitigations make whole exploit chain longer
and longer
– Multiple vulnerabilities required than before, e.s.p

on Google products

Fun!Profit?Profit!

• $$$

• $$$$$

• $$$$$$$

Credits

• All colleagues at KeenLab

Questions?
Wechat/weibo: @flanker_017

Questions?
Wechat/weibo: @flanker_017

