
Data-Efficient Performance Learning
for Configurable Systems

Jianmei Guo

October 17th 2017

Team

Sven Apel
@Passau

Jianmei Guo
@Alibaba

Norbert Siegmund
@Weimar

Krzysztof Czarnecki
@Waterloo

Atrisha Sarkar
@Waterloo

Pavel Valov
@Waterloo

Andrzej Wąsowski
@Copenhagen

Configurable Systems are Ubiquitous

Configurable software, hardware, human interaction

Configurability → Flexibility

•  Functional behavior

•  Non-functional / quality properties
– performance
– cost
– energy consumption
– safety
– security
– etc.

Configure Software to Tailor
Functional Behavior

x264	--quiet		
					--no-progress		
					--no-asm		
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

a	command-line	tool	to	encode	a	video	stream	

input	stream	
output	stream	

Configure Software to Tailor
Functional Behavior

x264	--quiet		
					--no-progress		
					--no-asm		
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

a	command-line	tool	to	encode	a	video	stream	

input	stream	
output	stream	

feature1	
feature2	
feature3	
feature4	
feature5	 co

nf
ig
ur
at
io
n1

	
(v
ar
ia
nt
1)
	

Configure Software to Meet a
Certain Performance Goal

x264	--quiet		
					--no-progress		
					--no-asm		
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

configuration1	
x264		
					--no-progress		
					--no-asm		
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

configuration2	

324	seconds	 551	seconds	

Tuning	only	one	option	improves	performance	by	41%	!	

Goals

•  Finding an optimal configuration to meet
a specific performance goal

•  Determining the impact of feature
selections on performance

•  Building the performance model behind a
certain system

Measure the Performance of All
Configurations?

•  An exponential number of configurations
– N Boolean features à about 2N configurations

•  The cost of measurement may be high
– E.g., executing a complex benchmark

Feature-Wise Measurement?

P(quiet)		
=	551	–	324	
=	227	seconds		

configuration2	
x264	--quiet		
					--no-progress		
					--no-asm		
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

configuration1	

324	seconds	 551	seconds	

x264	
					--no-progress		
					--no-asm		
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

Feature-Wise Measurement?

P(quiet)		
=	551	–	324	
=	227	seconds		

configuration2	
x264	--quiet		
					--no-progress		
					--no-asm		
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

configuration1	

324	seconds	 551	seconds	

x264	
					--no-progress		
					--no-asm		
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

configuration4	
x264	--quiet		
					--no-progress		
						
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

configuration3	

487	seconds	 661	seconds	

x264	
					--no-progress		
						
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

P’(quiet)		
=	661–	487	
=	174	seconds		

Feature-Wise Measurement?

P(quiet)		
=	551	–	324	
=	227	seconds		

Fe
at
ur
e	

in
te
ra
ct
io
ns
	

configuration2	
x264	--quiet		
					--no-progress		
					--no-asm		
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

configuration1	

324	seconds	 551	seconds	

x264	
					--no-progress		
					--no-asm		
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

configuration4	
x264	--quiet		
					--no-progress		
						
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

configuration3	

487	seconds	 661	seconds	

x264	
					--no-progress		
						
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

P’(quiet)		
=	661–	487	
=	174	seconds		

Key Challenges

•  An exponential number of configurations
– N Boolean features à about 2N configurations

•  The cost of measurement may be high
– E.g., executing a complex benchmark

•  Potential feature interactions
– Hard to detect

Approaches

•  Feature-interaction detection
–  [ICSE’12, SPLC’14, FSE’15, FSE’17]

•  Non-linear regression
–  [ASE’13, SPLC’15, ASE’15a, ICPE’17]

•  Fourier learning
–  [ASE’15b, SPLC’16]
– ACM Distinguished Paper Award @ ASE’15
– Best Paper Award @ SPLC’16

•  Large-data problems (data is CHEAP)
–  object detection and recognition
–  machine translation
–  text-to-speech
–  recommender systems
–  information retrieval

•  Small-data problems (data is EXPENSIVE)
–  personalized healthcare
–  robot reinforcement learning
–  sentiment analysis
–  community detection
–  system quality prediction

The ability to learn in complex domains without
requiring large quantities of data!

Executive Summary

•  Methodology
–  A well-established method CART
–  3 resampling techniques
–  3 parameter-tuning techniques
–  A sample quality metric

•  Evaluation on 10 real-world systems
•  Conclusion

–  DECART quickly (at most seconds) builds, validates, and determines an
accurate (above 90%) performance prediction model based only on a
given small sample of measured configurations, without additional effort to
detect feature interactions

–  Ensures that the resulting model holds optimal parameter settings based
on the currently available sample

–  Reaches a sweet spot between measurement effort and prediction
accuracy

–  Works automatically and progressively with random samples of any sizes
–  Considers all features and identifies the performance-relevant ones
–  Easy to understand and easy to implement

DECART

Generate an Initial Sample

Three heuristics:
•  feature-size: randomly selection, N
•  feature-wise: simple coverage, NW
•  feature-frequency: combinatorial coverage, NF

Roughly, N < NW < NF

Resampling

Three well-established methods:
•  hold-out
•  k-fold cross-validation
•  bootstrapping

Model Training

[Guo et al., Variability-Aware Performance Prediction: A Statistical Learning Approach. ASE’13]
[Breiman et al., Classification and Regression Trees. 1984]

Classification And Regression Trees (CART)
•  Non-linear learning

•  Robust to noise data
•  Usually very fast
•  Easy to understand and easy to implement

CART

Sample	mean	

Squared	error		
loss	

Sum	of	squared		
error	loss	

is	minimal	

CART

Sample	mean	

Squared	error		
loss	

Sum	of	squared		
error	loss	

is	minimal	

CART

Sample	mean	

Squared	error		
loss	

Sum	of	squared		
error	loss	

is	minimal	

CART

Sample	mean	

Squared	error		
loss	

Sum	of	squared		
error	loss	

is	minimal	

CART

Sample	mean	

Squared	error		
loss	

Sum	of	squared		
error	loss	

is	minimal	

Best	split	

(x14	=	1,	x7	=	0)	

(x14	=	1,	x7	=	0)	

Predicted	value	
for	any	configuration		

selecting	feature_14	and	
deselecting	feature_7	

Model Validation

Mean Relative Error (MRE)

Accuracy = 1 - MRE

Parameter Tuning

Determine the optimal parameter setting
•  Define a parameter / hyper-parameter space

•  Choose a parameter sweep method

Parameters vs. Hyper-Parameters
•  A machine-learning model is the definition of a

mathematical formula with a number of
parameters that need to be learned from the
data. By training a model with existing data, we
are able to fit the model parameters.

•  Hyper-parameters represent another kind of
parameters that cannot be directly learned from
the regular training process. These parameters
express “higher-level” properties of the model,
such as its complexity or how fast it should learn.

Parameter Space
Empirically determine a parameter space of
CART by domain analysis
•  Implementation in R

–  rpart(), rBayesianOptimization()
•  minsplit (integer): controls the minimum number of

configurations that must exist in a tree node for further
partitioning, [1, |S|]

•  minbucket (integer): specifies the minimum number of
configurations that must be present in any leaf node,
minbucket = minsplit / 3 [Williams, 2011]

•  complexity (real-value): controls the process of pruning a
decision tree, and it is used to control the size of the tree
and to select an optimal tree size,
[10-6, 0.01]

Parameter Sweep
Trade-off between exploration coverage and
efficiency
•  random search: randomly tests a certain set of

parameters
•  grid search: exhaustively tests all parameters
•  Bayesian optimization: uses a Gaussian Process to

model the surrogate function that (1) is used to
approximate the true performance function, and (2) it
typically optimizes the expected improvement, which
is the expected probability that new trials will improve
on the current best observation

Stopping Criteria for Sampling

The key to the trade-off between measurement
effort and prediction accuracy
•  Validation error, calculated based only on the input

sample S
•  Generalization error on new data WP \ S (i.e.,

configurations not measured before)

Why CART works?
Whole	population	
1152	configurations	

Random	sample	1	
81	configurations	
Accuracy:	93.6%	

Random	sample	2	
16	configurations	
Accuracy:	84.9%	

[Guo et al., Variability-Aware Performance Prediction: A Statistical Learning Approach. ASE’13]

Sample Quality Metric

Notoriously-known challenges in data mining
•  Heterogeneous variables of different scales may

give rise to unbalanced domination
–  Simple combination often makes numeric variables

dominate
–  Normalized combination makes Boolean variables

dominate

conf1: (f1=1, f2=1, f3=1, f4=1, f5=1), and performance = 1000s;
conf2: (f1=1, f2=1, f3=0, f4=0, f5=0), and performance = 1001s;
conf3: (f1=1, f2=0, f3=1, f4=1, f5=1), and performance = 10s;

Sample Quality Metric

•  Measure a sample’s distance or goodness of fit to
the whole population by Pearson’s Chi-squared test

•  Key idea: sum up the differences between observed
and expected outcome frequencies in terms of
both feature selections and performance values

Evaluation: Subjects

Comparing 3 Resampling Techniques

3 Parameter Tuning Methods

10-Fold Cross Validation + Grid Search

 Sweet-Spot between Measurement
Effort and Prediction Accuracy?

When the validation error is less than 10% ,
the generalization error also approximates to 10% !

 Sweet-Spot between Measurement
Effort and Prediction Accuracy?

When the validation error is less than 10% ,
the generalization error also approximates to 10% !

Conclusion
DECART:	A	data-efficient	performance	learning	approach	via	well-
established	statistical	learning	techniques	for	configurable	systems
•  quickly (at most seconds) builds, validates, and determines an accurate

(above 90%) performance prediction model based only on a given small
sample of measured configurations, without additional effort to detect
feature interactions

•  Employs systematic resampling and parameter tuning to ensure that the
resulting model holds optimal parameter settings based on the currently
available sample

•  Learns an accurate prediction model with as little measurement effort as
possible for a given system, such that a sweet spot between
measurement effort and prediction accuracy is reached

•  Works automatically and progressively with random samples of any
sizes

•  Considers all features and identifies the performance-relevant ones
•  Easy to understand and easy to implement

https://github.com/jmguo/DECART	

Thank you for your attention!

October 17th 2017

