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Configurable Systems are Ubiquitous�

��

Configurable software, hardware, human interaction 



Configurability → Flexibility�

��

•  Functional behavior 

•  Non-functional / quality properties 
– performance 
– cost 
– energy consumption 
– safety 
– security 
– etc. 



Configure Software to Tailor 
Functional Behavior�

��

x264	--quiet		
					--no-progress		
					--no-asm		
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

a	command-line	tool	to	encode	a	video	stream	

input	stream	
output	stream	
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Configure Software to Meet a 
Certain Performance Goal�

	�

x264	--quiet		
					--no-progress		
					--no-asm		
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

configuration1	
x264		
					--no-progress		
					--no-asm		
					--rc-lookahead	60		
					--ref	9		
					-o	trailer_480p24.x264	
					trailer_2k_480p24.y4m	

configuration2	

324	seconds	 551	seconds	

Tuning	only	one	option	improves	performance	by	41%	!	



Goals�


�

•  Finding an optimal configuration to meet 
a specific performance goal  

•  Determining the impact of feature 
selections on performance  

•  Building the performance model behind a 
certain system 



Measure the Performance of All 
Configurations?�

��

•  An exponential number of configurations 
– N Boolean features à about 2N configurations 

•  The cost of measurement may be high 
– E.g., executing a complex benchmark 



Feature-Wise Measurement?�

 ��
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Key Challenges�

 ��

•  An exponential number of configurations 
– N Boolean features à about 2N configurations 

•  The cost of measurement may be high 
– E.g., executing a complex benchmark 

•  Potential feature interactions 
– Hard to detect 



Approaches�

 ��

•  Feature-interaction detection 
–  [ICSE’12, SPLC’14, FSE’15, FSE’17] 

•  Non-linear regression 
–  [ASE’13, SPLC’15, ASE’15a, ICPE’17] 

•  Fourier learning 
–  [ASE’15b, SPLC’16] 
– ACM Distinguished Paper Award @ ASE’15 
– Best Paper Award @ SPLC’16 



 ��

•  Large-data problems (data is CHEAP) 
–  object detection and recognition  
–  machine translation 
–  text-to-speech 
–  recommender systems 
–  information retrieval  

•  Small-data problems (data is EXPENSIVE) 
–  personalized healthcare 
–  robot reinforcement learning 
–  sentiment analysis 
–  community detection 
–  system quality prediction 

The ability to learn in complex domains without 
requiring large quantities of data!  



Executive Summary�

 ��

•  Methodology 
–  A well-established method CART 
–  3 resampling techniques 
–  3 parameter-tuning techniques 
–  A sample quality metric 

•  Evaluation on 10 real-world systems 
•  Conclusion 

–  DECART quickly (at most seconds) builds, validates, and determines an 
accurate (above 90%) performance prediction model based only on a 
given small sample of measured configurations, without additional effort to 
detect feature interactions 

–  Ensures that the resulting model holds optimal parameter settings based 
on the currently available sample 

–  Reaches a sweet spot between measurement effort and prediction 
accuracy 

–  Works automatically and progressively with random samples of any sizes 
–  Considers all features and identifies the performance-relevant ones 
–  Easy to understand and easy to implement 



DECART�

 	�



Generate an Initial Sample�

 
�

Three heuristics: 
•  feature-size: randomly selection, N 
•  feature-wise: simple coverage, NW 
•  feature-frequency: combinatorial coverage, NF 

Roughly, N < NW < NF 



Resampling�

 ��

Three well-established methods: 
•  hold-out 
•  k-fold cross-validation 
•  bootstrapping 



Model Training�

���

[Guo et al., Variability-Aware Performance Prediction: A Statistical Learning Approach. ASE’13] 
[Breiman et al., Classification and Regression Trees. 1984] 

Classification And Regression Trees (CART) 
•  Non-linear learning 

•  Robust to noise data 
•  Usually very fast 
•  Easy to understand and easy to implement 



CART�
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(	x14	=	1,	x7	=	0	)	
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(	x14	=	1,	x7	=	0	)	

Predicted	value	
for	any	configuration		

selecting	feature_14	and	
deselecting	feature_7	



Model Validation�

���

Mean Relative Error (MRE) 

Accuracy = 1 - MRE 



Parameter Tuning�

���

Determine the optimal parameter setting 
•  Define a parameter / hyper-parameter space 

•  Choose a parameter sweep method 



Parameters vs. Hyper-Parameters�

���

•  A machine-learning model is the definition of a 
mathematical formula with a number of 
parameters that need to be learned from the 
data. By training a model with existing data, we 
are able to fit the model parameters. 

•  Hyper-parameters represent another kind of 
parameters that cannot be directly learned from 
the regular training process. These parameters 
express “higher-level” properties of the model, 
such as its complexity or how fast it should learn. 



Parameter Space�

���

Empirically determine a parameter space of 
CART by domain analysis 
•  Implementation in R 

–  rpart(), rBayesianOptimization() 
•  minsplit (integer): controls the minimum number of 

configurations that must exist in a tree node for further 
partitioning, [1, |S|] 

•  minbucket (integer): specifies the minimum number of 
configurations that must be present in any leaf node, 
minbucket = minsplit / 3  [Williams, 2011] 

•  complexity (real-value): controls the process of pruning a 
decision tree, and it is used to control the size of the tree 
and to select an optimal tree size,  
[10-6, 0.01] 



Parameter Sweep�

���

Trade-off between exploration coverage and 
efficiency 
•  random search: randomly tests a certain set of 

parameters 
•  grid search: exhaustively tests all parameters 
•  Bayesian optimization: uses a Gaussian Process to 

model the surrogate function that (1) is used to 
approximate the true performance function, and (2) it 
typically optimizes the expected improvement, which 
is the expected probability that new trials will improve 
on the current best observation 



Stopping Criteria for Sampling�

�	�

The key to the trade-off between measurement 
effort and prediction accuracy 
•  Validation error, calculated based only on the input 

sample S  
•  Generalization error on new data WP \ S (i.e., 

configurations not measured before)  



Why CART works?�

�
�

Whole	population	
1152	configurations	

Random	sample	1	
81	configurations	
Accuracy:	93.6%	

Random	sample	2	
16	configurations	
Accuracy:	84.9%	

[Guo et al., Variability-Aware Performance Prediction: A Statistical Learning Approach. ASE’13] 



Sample Quality Metric�

���

Notoriously-known challenges in data mining 
•  Heterogeneous variables of different scales may 

give rise to unbalanced domination 
–  Simple combination often makes numeric variables 

dominate 
–  Normalized combination makes Boolean variables 

dominate 

conf1: (f1=1, f2=1, f3=1, f4=1, f5=1), and performance = 1000s; 
conf2: (f1=1, f2=1, f3=0, f4=0, f5=0), and performance = 1001s; 
conf3: (f1=1, f2=0, f3=1, f4=1, f5=1), and performance = 10s; 



Sample Quality Metric�

���

•  Measure a sample’s distance or goodness of fit to 
the whole population by Pearson’s Chi-squared test 

•  Key idea: sum up the differences between observed 
and expected outcome frequencies in terms of 
both feature selections and performance values 



Evaluation: Subjects�

� �



Comparing 3 Resampling Techniques�

���



3 Parameter Tuning Methods�

���



10-Fold Cross Validation + Grid Search�

���



 Sweet-Spot between Measurement 
Effort and Prediction Accuracy?�

���

When the validation error is less than 10% , 
the generalization error also approximates to 10% !



 Sweet-Spot between Measurement 
Effort and Prediction Accuracy?�

���

When the validation error is less than 10% , 
the generalization error also approximates to 10% !



Conclusion�

�	�

DECART:	A	data-efficient	performance	learning	approach	via	well-
established	statistical	learning	techniques	for	configurable	systems 
•  quickly (at most seconds) builds, validates, and determines an accurate 

(above 90%) performance prediction model based only on a given small 
sample of measured configurations, without additional effort to detect 
feature interactions 

•  Employs systematic resampling and parameter tuning to ensure that the 
resulting model holds optimal parameter settings based on the currently 
available sample 

•  Learns an accurate prediction model with as little measurement effort as 
possible for a given system, such that a sweet spot between 
measurement effort and prediction accuracy is reached 

•  Works automatically and progressively with random samples of any 
sizes 

•  Considers all features and identifies the performance-relevant ones 
•  Easy to understand and easy to implement 

https://github.com/jmguo/DECART	



Thank you for your attention! 

October 17th 2017 


