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| The Life of a Model

GET DATA
TRAIN MODELS

EVALUATE MODELS

DEPLOY MODELS

MAKE PREDICTIONS

MONITOR PREDICTIONS




(N ML PLATFORM MISSION



| Uber ML Platform

e ML as a Service

e Scalable infrastructure for training and serving

e \Workflow tools for prototyping, iteration, and productionization

e Model and data serving with full monitoring for batch and realtime

e Scope
o Traditional ML & Deep Learning
o Supervised, Unsupervised and Semi-supervised

o  Online learning
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DATA SOURCES

Dynamic Data Source SETTINGS §

DYNAMIC | SQL Pipeline spark.sq






MEAL DELIVERY TIME



Uber EATs Delivery Time Models



| Key Challenges



Challenge 1.:



| Data Sources: Problems




Data Sources (Solutions)

e Data Storage
o  Spark for batch jobs
o Cassandra for online jobs

o  Streaming jobs

e Data Accessors
o Own DSL

o  Access basis features, curated features, and column stats
e Data Transformation
o Standard transformation functions + UDFs
e Examples
@palette:store:orders:prep_time_avg_lweek:rs_uuid

nFill(@basis:distance, mean(@basis:distance))




Challenge 2:



| PROBLEM

| SOLUTION



(1) Define partition scheme
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(2) Make train / test split
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@ Keep same split and partition for each level
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@ Train model for every node
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(s) Prune bad models
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@ At serving time, route to best model for each node
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Challenge 3:



| REALTIME PREDICT SERVICE



Challenge 4:



LIVE PREDICTION MONITORING
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