
Demystifying the

Secure Enclave Processor

Tarjei Mandt (@kernelpool)

Mathew Solnik (@msolnik)

David Wang (@planetbeing)

About Us

• Tarjei Mandt

▫ Senior Security Researcher, Azimuth Security

▫ tm@azimuthsecurity.com

• Mathew Solnik

▫ Director, OffCell Research

▫ ms@offcellresearch.com

• David Wang

▫ Senior Security Researcher, Azimuth Security

▫ dw@azimuthsecurity.com

mailto:tm@azimuthsecurity.com
mailto:tm@azimuthsecurity.com
mailto:tm@azimuthsecurity.com
mailto:ms@offcellresearch.com
mailto:dw@azimuthsecurity.com

Introduction

• iPhone 5S was a technological milestone

▫ First 64-bit phone

• Introduced several technological advancements

▫ Touch ID

▫ M7 motion coprocessor

▫ Security coprocessor (SEP)

• Enabled sensitive data to be stored securely

▫ Fingerprint data, cryptographic keys, etc.

Secure Enclave Processor

• Security circuit designed to perform secure services for the rest of
the SOC

▫ Prevents main processor from gaining direct access to sensitive data

• Used to support a number of different services

▫ Most notably Touch ID

• Runs its own operating system (SEPOS)

▫ Includes its own kernel, drivers, services, and applications

Secure (?) Enclave Processor

• Very little public information exists on the SEP

▫ Only information provided by Apple

• SEP patent only provides a high level overview

▫ Doesn‟t describe actual implementation details

• Several open questions remain

▫ What services are exposed by the SEP?

▫ How are these services accessed?

▫ What privileges are needed?

▫ How resilient is SEP against attacks?

Talk Outline

• Part 1: Secure Enclave Processor
▫ Hardware Design
▫ Boot Process

• Part 2: Communication
▫ Mailbox Mechanism
▫ Kernel-to-SEP Interfaces

• Part 3: SEPOS
▫ Architecture / Internals

• Part 4: Security Analysis
▫ Attack Surface and Robustness

Demystifying the Secure Enclave Processor

SEP’s ARM Core: Kingfisher

• Dedicated ARMv7a “Kingfisher” core

▫ Even EL3 on AP‟s core won‟t doesn‟t give you access to SEP

• Appears to be running at 300-400mhz~

• One of multiple kingfisher cores in the SoC

▫ 2-4 Other KF cores - used for NAND/SmartIO/etc

▫ Other cores provide a wealth of arch knowledge

• Changes between platforms (A7/A8/A9)

▫ Appears like anti-tamper on newer chips

Dedicated Hardware Peripherals

• SEP has its own set of peripherals accessible by memory-mapped IO
▫ Built into hardware that AP cannot access

 Crypto Engine & Random Number Generator
 Security Fuses

 GID/UID Keys

• Dedicated IO lines -
▫ Lines run directly to off-chip peripherals

 GPIO

 SPI
 UART

 I2C

Shared Hardware Peripherals

• SEP and AP share some peripherals
• Power Manager (PMGR)

▫ Security fuse settings are located in the PMGR
▫ Lots of other interesting items

• Memory Controller
▫ Can be poked at via iOS kernel

• Phase-locked loop (PLL) clock generator
▫ Nothing to see here move along…

• Secure Mailbox
▫ Used to tranfer data between cores

• External Random Access Memory (RAM)

Physical Memory

• Dedicated BootROM (and some SRAM)

▫ BootROM physically located at 0x2_0da0_0000

• Uses inline AES to encrypt external RAM

▫ Most likely to prevent physical memory attacks against off SoC RAM
chips (iPads)

• Hardware “filter” to prevent AP to SEP memory access

▫ Only SEP‟s KF core has this filter

SEP KF Filter Diagram

From SoC To SoC

Demystifying the Secure Enclave Processor

SEP Initialization – First Stage

• AP comes out of reset. AP BootROM releases SEP from reset.

▫ This is irreversible. No hardware register to reset or stop SEP
accessible by AP.

• Initially uses 4096 bytes of static RAM for stack and variables.

• Uses page tables in ROM.

▫ Needs Large Physical Address Extension.

• Starts a message loop.

SEP Initialization – Second Stage

• Listens for messages in the mailbox.

• 8-byte messages that have the same format SEPOS uses.

• All messages use endpoint 255 (EP_BOOTSTRAP)

Opcode Description

1, 2 “Status check” (Ping)

3 Generate nonce

4 Get nonce word

5 “BootTZ0” (Continue boot)

Memory Protections

• SEP needs more RAM than 4096 bytes of SRAM, so it needs
external RAM.

• RAM used by SEP must be protected against AP tampering.

• Two regions configurable by AP are setup:

▫ TZ0 is for the SEP.

▫ TZ1 is for the AP‟s TrustZone (Kernel Patch Protection).

• SEP must wait for AP to setup TZ0 to continue boot.

SEP Boot Flow

Configure TZ0 and TZ1

Send Ping

Send BootTZ0

Send Ping

AP

Acknowledge Ping

SEP

Map in TZ0

Setup Memory Encryption

Acknowledge BootTZ0

Begin Stage 3

iBoot

Kernel

Stage 3

Stage 2

SEP Memory Protection Bootstrap

• SEP doesn‟t take AP‟s word for
it that TZ0 is locked.

▫ Checks hardware registers for
lock.

▫ Then reads size and address
of TZ0 from other hardware
registers.

• Impossible to change these
hardware registers after TZ0 is
locked.

• Spin processor on failure.

Configure TZ0 and
TZ1

Send Ping

Send BootTZ0

Send Ping

Acknowledge Ping

Map in TZ0

Setup Memory
Encryption

Acknowledge
BootTZ0

Begin Stage 3

iBoot

Kernel

Stage 3

Stage 2

Memory Encryption Modes

• Appears to support ECB, CBC, and XEX.

• Capable of AES-128 or AES-256.

• Supports two channels.

▫ BootROM uses channel 1.

▫ SEPOS uses channel 0.

• All access to certain ranges of physical addresses get
encrypted/decrypted transparently.

▫ After boot, SEPOS has all page mappings into the encrypted range
(except for hardware regs and memory shared with AP).

Key Generation

• Keys are generated by “tangling”:

▫ True Random Number Generator output

▫ Static ”type” value.

• With protected (unreadable) registers:

▫ UID, GID, Seed A, Seed B.

 Seed B tangled with UID == GenID_2B

• Encrypt the following using GenID_2B to generate key:

▫ [4 byte magic = 0xFF XK1][4 bytes of 0s][192-bits of randomness]

Beginning Stage 3

• After memory encryption is
setup, SEP re-initializes to use
encrypted memory:

▫ Page tables

▫ Stack

▫ Data

• Begins a new message loop
with no shared code between it
and the initial low-capability
bootstrap.

Configure TZ0 and
TZ1

Send Ping

Send BootTZ0

Send Ping

Acknowledge Ping

Map in TZ0

Setup Memory
Encryption

Acknowledge
BootTZ0

Begin Stage 3

iBoot

Kernel

Stage 3

Stage 2

SEP Boot Flow: Stage 3

Send ART

AP

Acknowledge Ping

SEP

Acknowledge ART

Copy in ART

Send Shared Memory Addr

Send SEPOS

Copy in SEPOS

Validate SEPOS and ART

Acknowledge SEPOS

Boot SEPOS

Boot-loading: Img4

• SEP uses the “IMG4” bootloader format which is based on ASN.1 DER
encoding
▫ Very similar to 64bit iBoot/AP Bootrom
▫ Can be parsed with ”openssl -asn1parse”

• Three primary objects used by SEP

▫ Payload –
 Contains the encrypted sep-firmware

▫ Restore –
 Contains basic information when restoring SEP

▫ Manifest (aka the AP ticket) -
 Effectively the Alpha and the Omega of bootROM configuration (and security)

Img4 - Manifest

• The manifest (APTicket) contains almost all the essential information
used to authenticate and configure SEP(OS).

• Contains multiple hardware identifier tags

▫ ECID

▫ ChipID

▫ Others

• Is also used to change runtime settings in both software and hardware

▫ DPRO – Demote Production

▫ DSEC – Demote Security

▫ Others…

Reversing SEP’s Img4 Parser: Stage 1

• How can you reverse something you cannot see?

▫ Look for potential code reuse!

• Other locations that parse IMG4

▫ AP BootROM – A bit of a pain to get at

▫ iBoot – Dump from phys memory - 0x8700xx000

 Not many symbols…

 But sometimes it only takes 1…

(iBoot from n51)

Reversing SEP’s Img4 Parser: Stage 2

• Another file also contains the “Img4Decode” symbol
▫ /usr/libexec/seputil

• Userland IMG4 parser with many more symbols
▫ May not be exact – but bindiff shows it is very close

• From symbols found in seputil we can deduce:
▫ The ASN‟1 decoder is based on libDER

 Which Apple so kindly releases as OpenSource.

▫ The RSA portion is handled by CoreCrypto

• LibDER + CoreCrypto = SEP‟s IMG4 Parsing engine
▫ We now have a great base to work with

Img4 Parsing Flow

• SEP BootROM copies in the sep-firmware.img4 from AP

• Initializes the DER Decoder

▫ Decodes Payload, Manifest, and Restore Info

• Verifies digests and signing certificates

▫ Root of trust cert is hardcoded at the end of BootROM

• Verifies all properties in manifest

▫ Checks against current hardware fusing

• If all items pass – load and execute the payload

Img4 Parsing Flow

AP

Decode Payload & Manifest

SEP

Validate Digest

Validate Certificates Fail

Validate Manifest

Validate Properties Against Certificate

Validate Properties Against Hardware

Boot SEPOS

Read Fuses

SEP

Sends SEP IMG4

Demystifying the Secure Enclave Processor

Secure Mailbox

• The secure mailbox allows the AP to communicate with the SEP

▫ Features both an inbox (request) and outbox (reply)

• Implemented using the SEP device I/O registers

▫ Also known as the SEP configuration space

Interrupt-based Message Passing

• When sending a message, the AP writes to the inbox of the
mailbox

• This operation triggers an interrupt in the SEP

▫ Informs the SEP that a message has been received

• When a reply is ready, the SEP writes a message back to the
outbox

▫ Another interrupt is generated in order to let the AP know a message
was received

Mailbox Mechanism

Start
Write

operation?
Read

operation?
No

Yes

Address ==
Inbox

Data written to
outbox?

Update inbox with
write data

Generate interrupt
for SEP processor

Yes

Ignore write
operation

No

Address ==
Outbox

Yes

Respond to read
with nonce data

No

Respond to read
with outbox data

Yes

No

Yes

Done

Generate interrupt
for AP processor

No

Mailbox Message Format

• A single message is 8 bytes in size

• Format depends on the receiving endpoint

• First byte is always the destination endpoint

struct {

 uint8_t endpoint; // destination endpoint number

 uint8_t tag; // message tag

 uint8_t opcode; // message type

 uint8_t param; // optional parameter

 uint32_t data; // message data

} sep_msg;

SEP Manager

• Provides a generic framework for drivers to communicate with the
SEP

▫ Implemented in AppleSEPManager.kext

▫ Builds on the functionality provided by the IOP

• Enables drivers to register SEP endpoints

▫ Used to talk to a specific SEP app or service

▫ Assigned a unique index value

• Also implements several endpoints of its own

▫ E.g. the SEP control endpoint

SEP Endpoints (1/2)

Index Name Driver

0 AppleSEPControl AppleSEPManager.kext

1 AppleSEPLogger AppleSEPManager.kext

2 AppleSEPARTStorage AppleSEPManager.kext

3 AppleSEPARTRequests AppleSEPManager.kext

4 AppleSEPTracer AppleSEPManager.kext

5 AppleSEPDebug AppleSEPManager.kext

6 <not used>

7 AppleSEPKeyStore AppleSEPKeyStore.kext

SEP Endpoints (2/2)

Index Name Driver

8 AppleMesaSEPDriver AppleMesaSEPDriver.kext

9 AppleSPIBiometricSensor AppleBiometricSensor.kext

10 AppleSEPCredentialManager AppleSEPCredentialManager.kext

11 AppleSEPPairing AppleSEPManager.kext

12 AppleSSE AppleSSE.kext

254 L4Info

255 Bootrom SEP Bootrom

Control Endpoint (EP0)

• Handles control requests issued to the SEP

• Used to set up request and reply out-of-line buffers for an
endpoint

• Provides interface to generate, read, and invalidate nonces

• The SEP Manager user client provides some support for
interacting with the control endpoint

▫ Used by the SEP Utility (/usr/libexec/seputil)

Control Endpoint Opcodes

Opcode Name Description

0 NOP Used to wake up SEP

2 SET_OOL_IN_ADDR Request out-of-line buffer address

3 SET_OOL_OUT_ADDR Reply out-of-line buffer address

4 SET_OOL_IN_SIZE Size of request buffer

5 SET_OOL_OUT_SIZE Size of reply buffer

10 TTYIN Write to SEP console

12 SLEEP Sleep the SEP

Out-of-line Buffers

• Transferring large amounts of data is slow using the interrupt-
based mailbox

▫ Out-of-line buffers used for large data transfers

• SEP Manager provides a way to allocate SEP visible memory

▫ AppleSEPManager::allocateVisibleMemory(…)

▫ Actually allocates a portion of physical memory

• Control endpoint is used to assign the request/reply buffer to the
target endpoint

Endpoint Registration (AP)

Allocate SEP visible
memory

Create
AppleSEPEndpoint

object

Insert endpoint in
endpoint table

OOL buffers
required?

Yes

Assign send buffer
to endpoint

Allocate SEP visible
memory

Register OOL buffer
with SEP via EP0

Register OOL buffer
with SEP via EP0

Assign receive buffer
to endpoint

DoneNo

Start

Physically contiguious
memory region

AppleSEPManager::endpointForHandle()

Inserts endpoint at the
specified table index

Drivers Using SEP

• Several drivers now rely on the SEP for their operation

• Some drivers previously located in the kernel have had parts
moved into the SEP

▫ Apple(SEP)KeyStore

▫ Apple(SEP)CredentialManager

• Most drivers have a corresponding app in the SEP

Demystifying the Secure Enclave Processor

L4

• Family of microkernels

• First introduced in 1993 by Jochen Liedtke

▫ Evolved from L3 (mid-1980s)

• Developed to address the poor performance of earlier
microkernels

▫ Improved IPC performance over L3 by a factor 10-20 faster

• Numerous variants and implementations

▫ E.g. L4-embedded optimized for embedded systems

SEPOS

• Based on Darbat/L4-embedded (ARMv7)

▫ Custom modifications by Apple

• Implements its own drivers, services, and applications

▫ Compiled as macho binaries

• The kernel provides only a minimal set of interfaces

▫ Major part of the operating system implemented in user-mode

SEPOS Architecture

SEP Drivers SEP Services
SEPOS

(Bootstrap Server)

Secure Key Store
Secure Credential

Manager
Secure Biometric

Engine

Hardware

SSE
ART Manager /

ART Mate

Embedded Runtime (ERT)

libSEPOS

Kernel (L4)

Core SEPOS
Components

SEP Applications

Kernel (L4)

• Initializes the machine state to a point where it is usable

▫ Initializes the kernel page table

▫ Sets up the kernel interface page (KIP)

▫ Configures the interrupts on the hardware

▫ Starts the timer

▫ Initializes and starts the kernel scheduler

▫ Starts the root task

• Provides a small set (~20) of system calls

System Calls (1/2)

Num Name Description

0x00 L4_Ipc Set up IPC between two threads

0x00 L4_Notify Notify a thread

0x04 L4_ThreadSwitch Yield execution to thread

0x08 L4_ThreadControl Create or delete threads

0x0C L4_ExchangeRegisters Exchange registers wit another thread

0x10 L4_Schedule Set thread scheduling information

0x14 L4_MapControl Map or free virtual memory

0x18 L4_SpaceControl Create a new address space

0x1C L4_ProcessorControl Sets processor attributes

System Calls (2/2)

Num Name Description

0x20 L4_CacheControl Cache flushing

0x24 L4_IpcControl Limit ipc access

0x28 L4_InterruptControl Enable or disable an interrupt

0x2C L4_GetTimebase Gets the system time

0x30 L4_SetTimeout Set timeout for ipc sessions

0x34 L4_SharedMappingControl Set up a shared mapping

0x38 L4_SleepKernel ?

0x3C L4_PowerControl ?

0x40 L4_KernelInterface Get information about kernel

Privileged System Calls

• Some system calls are considered privileged

▫ E.g. memory and thread management calls

• Only root task (SEPOS) may invoke privileged system calls

▫ Determined by the space address of the caller

• Check performed by each individual system call where needed

▫ is_privileged_space()

Privileged System Calls

SYS_SPACE_CONTROL (threadid_t space_tid, word_t control, fpage_t kip_area,

 fpage_t utcb_area)

{

 TRACEPOINT (SYSCALL_SPACE_CONTROL,

 printf("SYS_SPACE_CONTROL: space=%t, control=%p, kip_area=%p, "

 "utcb_area=%p\n", TID (space_tid),

 control, kip_area.raw, utcb_area.raw));

 // Check privilege

 if (EXPECT_FALSE (! is_privileged_space(get_current_space())))

 {

 get_current_tcb ()->set_error_code (ENO_PRIVILEGE);

 return_space_control(0, 0);

 }

 ...

} INLINE bool is_privileged_space(space_t *

space)

{

 return (is_roottask_space(space);

}

Check for root task in
L4_SpaceControl

system call

from darbat 0.2 source

SEPOS (INIT)

• Initial process on boot (root task)

▫ Can call any privileged L4 system call

• Initializes and starts all remaining tasks

▫ Processes an application list embedded by the sep-firmware

• Maintains a context structure for each task

▫ Includes information about the virtual address space, privilege level,
threads, etc.

• Invokes the bootstrap server

SEPOS App Initialization

Initialize Apps

proc_create() No Last app in list?

Done

Yes

macho2vm() thread_create()

ertp_map_page()

Read application list
from sep-firmware

Compute CRC of
loaded images

CRC valid?

Panic

Yes

No

Create and start new
thread at app entry point
(L4_ThreadControl)

Reads Mach-O header
and maps segments

(L4_MapControl)

Creates new process
and address space
(L4_SpaceControl)

Maps the Mach-O
header from physical

memory

Compares CRC with value
stored in sep-firmware

Application List

• Includes information about all applications embedded by the SEP
firmware

▫ Physical address (offset)

▫ Virtual base address

▫ Module name and size

▫ Entry point

• Found 0xEC8 bytes prior to the SEPOS binary in the sep-firmware
image

Application List

Size Entry point

Virtual address

Physical address
(offset)

Bootstrap Server

• Implements the core functionality of SEPOS

▫ Exports methods for system, thread and object (memory)
management

• Made available to SEP applications over RPC via the embedded
runtime

▫ ert_rpc_bootstrap_server()

• Enable applications to perform otherwise privileged operations

▫ E.g. create a new thread

Privileged Methods

• An application must be privileged to invoke certain bootstrap
server methods

▫ Query object/process/acl/mapping information

• Privilege level is determined at process creation

▫ Process name >= „A „ and <= „ZZZZ‟

▫ E.g. “SEPD” (SEPDrivers)

• Check is done by each individual method

▫ proc_has_privilege(int pid);

sepos_object_acl_info()

int sepos_object_acl_info(int *args)

{

 int result;

 int prot;

 int pid;

 args[18] = 1;

 *((_BYTE *)args + 104) = 1;

 result = proc_has_privilege(args[1]);

 if (result == 1)

 {

 result = acl_get(args[5], args[6], &pid, &prot);

 if (!result)

 {

 args[18] = 0;

 args[19] = prot;

 args[20] = pid;

 result = 1;

 *((_BYTE *)args + 104) = 1;

 }

 }

 return result;

}

Call to check if sender‟s
pid is privileged

Entitlements

• Some methods also require special entitlements

▫ sepos_object_create_phys()

▫ sepos_object_remap()

• Seeks to prevent unprivileged applications from mapping
arbitrary physical memory

• Assigned to a process on launch

▫ Separate table used to determine entitlements

Entitlement Assignment

int proc_create(int name)

{

 int privileged = 0;

 ...

 if ((name >= 'A ') && (name <= 'ZZZZ'))

 privileged = 1;

 proctab[pid].privileged = privileged;

 proctab[pid].entitlements = 0;

 while (privileged_tasks[2 * i] != name)

 if (++i == 3)

 return pid;

 proctab[pid].entitlements = privileged_tasks[2 * i + 1];

 return pid;

}

Entitlement Assignment

Task Name Entitlements

SEPDrivers MAP_PHYS

ARTManager/ARTMate MAP_PHYS | MAP_SEP

Debug MAP_PHYS | MAP_SEP

• MAP_PHYS (2)

▫ Required in order to access (map) a physical region

• MAP_SEP (4)

▫ Same as above, but also needed if the physical region
targets SEP memory

SEP Drivers

• Hosts all SEP drivers

▫ AKF, TRNG, Expert, GPIO, PMGR, etc.

▫ Implemented entirely in user-mode

• Maps the device I/O registers for each driver

▫ Enables low-level driver operations

• Exposed to SEP applications using a dedicated driver API

▫ Includes functions for lookup, control, read, and write

Driver Interaction

SEPOS

SEPDrivers

Lookup handle to
SEPD service

Driver

Driver lookup
Lookup handle to

driver

Driver control /
read / write

Perform driver
operation

DriverDriver

Registers SEPD
 service

 on startup

Retrieves SEPD thread
handle from list

AKF Driver

• Manages AP/SEP endpoints in SEPOS

• Handles control (EP0) requests

▫ E.g. sets up objects for reply and response OOL buffers

• SEP applications may register new endpoints to handle specific
AP requests

▫ AKF_ENDPOINT_REGISTER (0x412C) control request

SEP Services

• Hosts various SEP related services

▫ Secure Key Generation Service

▫ Test Service

▫ Anti Replay Service

▫ Entitlement Service

• Usually implemented on top of drivers

• Service API provided to SEP applications

▫ service_lookup(…)

▫ service_call(…)

Service Interaction

SEPOS

sepServices

Lookup handle to
sepS service

Service

Service lookup
Lookup handle to

service

Service call
Issue a service

request

ServiceService

Registers sepS
 service

 on startup

Retrieves sepS thread
handle from list

SEP Applications

• Primarily designed to support various drivers running in the AP

▫ AppleSEPKeyStore  sks

▫ AppleSEPCredentialManager  scrd

• Some apps are only found on certain devices

▫ E.g. SSE is only present on iPhone 6 and later

• May also be exclusive to development builds

▫ E.g. Debug application

Demystifying the Secure Enclave Processor

Attack Surface: SEPOS

• Mostly comprises the methods in which data is communicated
between AP and SEP

▫ Mailbox (endpoints)

▫ Shared request/reply buffers

• Assumes that an attacker already has obtained AP kernel level
privileges

▫ Can execute arbitrary code under EL1

Attack Surface: AKF Endpoints

• Every endpoint registered with AKF is a potential target

▫ Includes both SEP drivers and applications

• Does not require an endpoint to be registered with the SEP
Manager (AP)

▫ Can write messages to the mailbox directly

▫ Alternatively, we can register our own endpoint with SEP Manager

Attack Surface: AKF Endpoints

Endpoint Owner OOL In OOL Out Notes

0 SEPD/ep0

1 SEPD/ep1 ✓

2 ARTM ✓ ✓ iPhone 6 and prior

3 ARTM ✓ ✓ iPhone 6 and prior

7 sks ✓ ✓

8 sbio/sbio ✓ ✓

10 scrd/scrd ✓ ✓

12 sse/sse ✓ ✓ iPhone 6 and later

List of AKF registered endpoints (iOS 9) and their use of out-
of-line request and reply buffers

Attack Surface: Endpoint Handler

SEP Biometrics
message handler

Attack Robustness

• How much effort is required to exploit a SEP vulnerability?

▫ E.g. stack/heap corruption

• Determined by several factors

▫ Address space layout

▫ Allocator (heap) hardening

▫ Exploit mitigations

▫ And more

Address Space Layout

• SEP applications are loaded at their preferred base address

▫ No image base randomization

▫ Typically based at 0x1000 or 0x8000 (depending on presence of
pagezero segment)

• Segments without a valid memory protection mask (!= 0) are
ignored

▫ E.g. __PAGEZERO is never “mapped”

Stack

TEXT
Main Thread

Thread 2

Stack

DATA

Mapping
Thread 3

Stack

Virtual Memory

System stack
(0x1000 bytes)

Application
Image

Stack Corruptions

• The main thread of a SEP
application uses an image
embedded stack
▫ A corruption could overwrite

adjacent DATA segment data

• Thread stacks of additional
threads spawned by SEPOS are
mapped using objects
▫ Allocated with gaps  “guard

pages”

Stack Corruptions

• SEP applications are compiled with stack cookie protection

▫ Cookie value is fixed to „GARD‟

 FIXED in iOS 10 (sort of)

▫ Trivial to forge/bypass

• Stack addresses are in most cases known

▫ Main thread stack is at a known address

▫ Addresses of subsequent thread stacks are predictable

Heap Corruptions: malloc()

• Runtime allocator leveraged by SEP applications

▫ K&R implementation

• Singly linked free list (ordered by size) with header that includes
pointer and block size

▫ struct Header { void * ptr, size_t size };

▫ Coalesces adjacent elements on free()

• Size of heap determined on initialization

▫ malloc_init(malloc_base, malloc_top);

▫ Non-expandable

Heap Corruptions: malloc()

Next

Size

Data (Free) Data (In Use)

Next

Size

Data (Free)

Free List Next

Size

Image DATA segment

Heap Corruptions: malloc()

• No protection of heap metadata

▫ Free list pointers can be overwritten

▫ Block size can be corrupted

• Allocation addresses are predictable

▫ Malloc area embedded by __DATA segment in application image

▫ Allocations made in sequential order

No-Execute Protection

• SEPOS implements no-execute protection

• Always set when a page is not marked as executable

▫ space_t::map_fpage()

▫ Sets both XN and PXN bits in page table entries

• Non-secure (NS) bit also set for all pages outside SEP memory
region

SEPOS Mitigations Summary

Mitigation Present Notes

Stack Cookie Protection Yes Fixed in iOS 10

Memory Layout Randomization

User No

Kernel No Image base: 0xF0001000

Stack Guard Pages Yes/No Not for main thread

Heap Metadata Protection No

Null-Page Protection No Must be root task to map page

No-Execute Protection Yes Both XN and PXN

Attack Surface: BootROM

• Effectively only two major attack surfaces

▫ IMG4 Parser

 Memory Corruption

 Logic Flaws

▫ Hardware based

• Only minor anti-exploit mitigations present

▫ No ASLR

▫ Basic stack guard

▫ One decent bug = game over

Attacking IMG4

• ASN.1 is a very tricky thing to pull off well
▫ Multiple vulns in OpenSSL, NSS, ASN1C, etc

• LibDER itself actually rather solid
▫ “Unlike most other DER packages, this one does no malloc or copies

when it encodes or decodes”
 – LibDER‟s readme.txt

▫ KISS design philosophy

• But the wrapping code that calls it may not be
▫ Audit seputil and friends
▫ Code is signifigantly more complex then libDER itself

Attack Surface: Hardware

• Memory corruption attacks again data receivers on peripheral
lines
▫ SPI
▫ I2C
▫ UART

• Side Channel/Differential Power Analysis
▫ Stick to the A7 (newer ones are more resistant)

• Glitching
▫ Standard Clock/Voltage Methods
▫ Others

External RAM

• Encrypted memory has no validation.

▫ Can corrupt bits of SEP memory

• When generating the encryption key the “random component” is
temporarily stored unencrypted in external RAM.

▫ This may allow an attacker to influence generation of the final
memory encryption key

Attacking the Fuse Array

• Potentially one of the most invasive attack vectors

▫ Requires a lot of patience

▫ High likelihood of bricking

• Laser could be used

▫ Expensive method - not for us

• Primary targets

▫ Production Mode

▫ Security Mode

End Game: JTAG

▫ Requires a 2000+ pin
socket

▫ Need to bypass CRC and
fuse sealing

▫ “FSRC” Pin - A line into
fuse array?

• Glitch the fuse sensing routines

• Attack the IMG4 Parser

▫ What exactly do DSEC and DPRO really do?

A8 SoC Pins

Demystifying the Secure Enclave Processor

Conclusion

• SEP(OS) was designed with security in mind

▫ Mailbox interface

▫ Privilege separation

• However, SEP(OS) lacks basic exploit protections

▫ E.g. no memory layout randomization

• Some SEP applications expose a significant attack surface

▫ E.g. SEP biometrics application

Conclusion (Continued)

• Overall hardware design is light years ahead of competitors

▫ Hardware Filter

▫ Inline Encrypted RAM

▫ Generally small attack surface

• But it does have its weaknesses

▫ Shared PMGR and PLL are open to attacks

▫ Inclusion of the fuse source pin should be re-evaluated

▫ The demotion functionality appears rather dangerous

 Why does JTAG over lightning even exist?

Thanks!

• Ryan Mallon

• Daniel Borca

• Anonymous reviewers

Demystifying the Secure Enclave Processor

SEPOS: System Methods

Class Id Method Description Priv

0 0 sepos_proc_getpid() Get the process pid

0 1 sepos_proc_find_service() Find a registered service by name

0 1001 sepos_proc_limits() Query process limit information x

0 1002 sepos_proc_info() Query process information

0 1003 sepos_thread_info() Query information for thread

0 1004 sepos_thread_info_by_tid() Query information for thread id

0 1100 sepos_grant_capability() - x

0 2000 sepos_panic() Panic the operating system

SEPOS: Object Methods (1/2)

Class Id Method Description Priv

1 0 sepos_object_create() Create an anonymous object

1 1 sepos_object_create_phys() Create an object from a physical region x (*)

1 2 sepos_object_map() Map an object in a task‟s address space

1 3 sepos_object_unmap() Unmap an object (not implemented)

1 4 sepos_object_share() Share an object with a task

1 5 sepos_object_access() Query the access control list of an object

1 6 sepos_object_remap() Remap the physical region of an object x (*)

1 7 sepos_object_share2() Share manifest with task

SEPOS: Object Methods (2/2)

Class Id Method Description Priv

1 1001 sepos_object_object_info() Query object information x

1 1002 sepos_object_mapping_info() Query mapping information x

1 1003 sepos_object_proc_info() Query process information x

1 1004 sepos_object_acl_info() Query access control list information x

SEPOS: Thread Methods

Class Id Method Description Priv

2 0 sepos_thread_create() Create a new thread

2 1 sepos_thread_kill() Kill a thread (not implemented)

2 2 sepos_thread_set_name() Set a service name for a thread

2 3 sepos_thread_get_info() Get thread information

