Micro Service and
Continuous Delivery

SRl @ DaoCloud



Let’s Imagine that you are build an online store

Order
Customer
ltem
Payment
Dashboard
Cart
Report Recommend
Monitoring

Comments Supply



Intimidate Developers



Obstacle to Frequent Development

Need 1o redeploy everything for a new
feature

nterrupts long running background jolbs
ncreasing risk of failure

Updates will happen less often —really long
QA cycles




Overloads Your IDE and Container



Require long-term commitment to @
tech stack






Smaller, simpler apps

« Easy to understand and develop
« Less dependences

« Faster to build and deploy

« Even, Failure faster



Best Technology for Each Service

0 mongoDB






There are Drawbacks

Complexities on

Develop
Test A Distributed System

Deploy



Automation is Implicit



Continuous Integration

Continuous Integration is the practice of integrating early and
often, so as to avoid the pitfalls of “Integration Hell” .

Initiate CI

Commit Process



Continuous Integration to
Continuous Delivery



Continuous Delivery ?
Continuous Diversel



That’ s All?

I’'m handing tickets for running apps!

* Node.js
e Python
* Ruby

* Golang
* Java

e PHP



Duang, Duang:--

“Works for me”
“Can’t you reproduce”
“Upgrade to 1.2.5-xx"

“I would appreciate if you could test b/w 3 and 4
am”

“So to trigger the bug you have to install Xand Y
then configure A, B and C, then download the
extra file, put it in this directory.



How Docker Helps



Docker & Micro Service

v~ Develop simplest possible solution
v~ Configuration is a runtime constraint D
v~ Not extra-extra-complex application eV

new WebServer().start(8080);

v~ Manage hardware / infrastructure
v~ Monitoring / backups

Ops v

Not apps implementation details



Unified Integration



Reproducible Delivery



Dockerized Apps



The Landscape with Containers



Q&A



