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Let’s Imagine that you are build an online store
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Intimidate Developers



Obstacle to Frequent Development

Need 1o redeploy everything for a new
feature

nterrupts long running background jolbs
ncreasing risk of failure

Updates will happen less often —really long
QA cycles




Overloads Your IDE and Container



Require long-term commitment to @
tech stack






Smaller, simpler apps

« Easy to understand and develop
« Less dependences

« Faster to build and deploy

« Even, Failure faster



Best Technology for Each Service

0 mongoDB






There are Drawbacks

Complexities on

Develop
Test A Distributed System

Deploy



Automation is Implicit



Continuous Integration

Continuous Integration is the practice of integrating early and
often, so as to avoid the pitfalls of “Integration Hell” .

Initiate CI

Commit Process



Continuous Integration to
Continuous Delivery



Continuous Delivery ?
Continuous Diversel



That’ s All?

I’'m handing tickets for running apps!

* Node.js
e Python
* Ruby

* Golang
* Java

e PHP



Duang, Duang:--

“Works for me”
“Can’t you reproduce”
“Upgrade to 1.2.5-xx"

“I would appreciate if you could test b/w 3 and 4
am”

“So to trigger the bug you have to install Xand Y
then configure A, B and C, then download the
extra file, put it in this directory.



How Docker Helps



Docker & Micro Service

v~ Develop simplest possible solution
v~ Configuration is a runtime constraint D
v~ Not extra-extra-complex application eV

new WebServer().start(8080);

v~ Manage hardware / infrastructure
v~ Monitoring / backups

Ops v

Not apps implementation details



Unified Integration



Reproducible Delivery



Dockerized Apps



The Landscape with Containers



Q&A



