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Introduction
 

• Li Ma
–  Principle Architect in AWcloud
–  Core in OpenStack Dragonflow
–  Concentrated on large-scale cloud infrastructure

• Omer Anson
–  Software Engineer in Huawei
–  Core in OpenStack Dragonflow



Dragonflow Overview
• Integral “Big Tent” project in OpenStack
• Designed for High Scale, Performance and Low Latency
• Lightweight and Simple
• Easily Extendable
• Distributed SDN Control Plane
• Focus on advanced networking services
• Distributes Policy Level Abstraction to the Compute Nodes
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“Under The Hood”
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Current Release Features (Mitaka)
L2 core API, IPv4, IPv6 
§ GRE/VxLAN/STT/Geneve tunneling protocols 

Distributed L3 Virtual Router
Distributed DHCP 
Pluggable Distributed Database
§ ETCD, RethinkDB, RAMCloud, Redis, ZooKeeper

Pluggable Publish-Subscribe
§ ØMQ, Redis

Security Groups
§   OVS Flows leveraging connection tracking integration

Distributed DNAT
Selective Proactive Distribution
§ Tenant Based



Pluggable Database

Requirements
§ HA + Scalability
§ Different Environments have different requirements

§ Performance, Latency, Scalability, etc.

Why Pluggable?
§ Long time to productize
§ Mature Open Source alternatives
§ Allow us to focus on the networking services only  
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1 VM Send DHCP_DISCOVER 

2 Classify Flow as DHCP, Forward to Controller

3 DHCP App sends DHCP_OFFER back to VM

4 VM Send DHCP_REQUEST

5 Classify Flow as DHCP, Forward to Controller

6 DHCP App populates DHCP_OPTIONS from DB/CFG and send 
DHCP_ACK
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Is Dragonflow Ready?

      AWcloud Point of View



Dispatch Network Policy to Compute Nodes

Requirements:

Scalability
Reliability

Currently, we use Neutron OVS plugin
…but as workloads increase…



Limitations in Large-scale deployments

-  Messaging
- Distributed Messaging System for OpenStack at Scale
- Presented in Vancouver Summit 2015

-  Persistent HA DB
- Dragonflow DONE the SDN way
- Presented in Austin Summit 2016



Scalability in Persistent Storage

We prefer BASE systems for data backends

• Basically Available
• Soft-state
• Eventual consistent

Is there any open source solution that can meet our requirements?



Scalable Persistent Storage in Dragonflow

• A pluggable Key-Value Interface Layer
• Supported Solutions

• ETCD
• RAMCloud
• ZooKeeper
• Redis
• RethinkDB

     Is it enough?
Scalable and reliable?



DB Consistency: Common Problem to all SDN Solutions 
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DB Consistency: Common Problem to all SDN Solutions 

Neutron DB

Relational Database

ACID system

Stores the whole virtualized network 
topology for OpenStack

Dragonflow DB

Key-value Store

BASE system

Stores a ‘partial’ virtualized network 
topology used in Dragonflow



DB Consistency: Common Problem to all SDN Solution 
Problem 1: Dragonflow DB operation has failed

• Neutron DB operation is committed
• But the related Dragonflow DB operations have failed



DB Consistency: Common Problem to all SDN Solution 
Problem 2: Multiple Parallel Transactions

• Neutron DB can deal with multiple parallel transactions.
• How about Dragonflow DB?



DB Consistency: Common Problem to all SDN Solution 
Problem 3: Nested Transactions

• Neutron DB can deal with nested transactions.
• How about Dragonflow DB?



DB Consistency: Common Problem to all SDN Solution 
Additional Problems

• There may be other issues.



Some thoughts on DB Consistency

• Database in Multi-node/Multi-core System
• Multi-Version Concurrency Control
• Transaction Isolation

• REPEATABLE READ
• READ COMMITTED
• READ UNCOMMITTED
• SERIALIZABLE



Some thoughts on DB Consistency



Some thoughts on DB Consistency

• Remove Neutron DB
• Complicated Solution when involving ML2
• Cannot be done in a short period of time
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Some thoughts on DB Consistency

• Introduce the pluggable key-value store into Neutron
• How to work with SQLAlchemy?

• ROME: https://github.com/BeyondTheClouds/rome
• Need much more time on evaluation and deep discussion.
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Some thoughts on DB Consistency

• Are there any other solutions?
• That are simple?
• That are straightforward?



DB Consistency in Dragonflow
—— Distributed Lock

• Introduce a distributed lock for coordination
– Guarantee the atomicity of a given API
– Implemented in the Neutron core plugin layer
– Project-based lock allows concurrency
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• Initial Solution: Introduce a distributed lock for coordination
– Initially it was implemented by SELECT-FOR-UPDATE statement
– Not compatible with Galera clustering
– Performance penalty when involving retry_for_deadlock operation

DB Consistency in Dragonflow
—— Distributed Lock



•  Improved Solution: SQL-based compare-and-swap operation
– Compatible with Galera clustering
– No performance penalty

DB Consistency in Dragonflow
—— Distributed Lock



•  Introduce an object synchronization mechanism
– All the objects stored in both databases are versioned.
– Sync the object when something unexpected happens.
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•  Introduce auto-recovery mechanism
– Periodically detect inconsistency by version comparison.
– Recover the object data from Neutron DB to Dragonflow DB.
– Compatible for multi-node deployment.

• Introduce Master Election
• Introduce Load Balancing in the later phase

DB Consistency in Dragonflow
—— Auto-Recovery



DB Consistency in Dragonflow
—— Auto-Recovery
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To the Next Stage



OpenStack Challenges 

• Scalability
– Networking does not scale (< 500 compute nodes)

• Performance
– Networking performance is low (namespace overhead, huge 

control plane overhead, …)

• Operability
– Reference implementation has lots of maintenance problems 

(e.g. thousands of concurrent DHCP servers, namespaces, 
etc.)



Scalability
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Roadmap

Additional DB Drivers ZooKeeper, Redis…
Selective Proactive DB 
Pluggable Pub/Sub Mechanism  
DB Consistency  
Distributed DNAT
Security Group

Ø Hierarchical Port Binding (SDN ToR) move to ML2
Ø Containers (Kuryr plugin and nested VM support)
Ø Topology Service Injection / Service Chaining
Ø Inter Cloud Connectivity (Border Gateway / L2GW)
Ø Optimize Scale and Performance
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Newton Release New Applications

l IGMP Application
l Distributed Load Balancing (East/West)
l Brute Force prevention
l DNS service
l Distributed Metadata proxy
l Port Fault Detection



Ride the Dragon!
• Documentation 

– https://wiki.openstack.org/wiki/Dragonflow
• Bugs & blueprints 

– https://launchpad.net/dragonflow
• DF IRC channel 

–  #openstack-dragonflow
–  Weekly on Monday at 0900 UTC in 

#openstack-meeting-4 (IRC)
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