
Java and the Machine

http://www.jclarity.com

● jClarity - We use statistics and Machine
Learning (ML) to find the root cause of
performance problems

● Martijn - CEO & Janitor, Author, Speaker, Sun/Oracle Java Champion

Our background

Outline

1. Hardware has changed

2. Computer Science Laws (for performance)

3. Challenges with Java and the JVM

4. Java performance is hard to diagnose

5. Analytics > Metrics - an example with GC

1. Hardware has changed

The next two slides show you
an example of how hardware

has changed

Intel 4004
The first commercial
Microprocessor in
1971

Intel
i7-3770
A more modern CPU

All things are difficult before they are easy

万事开头难

2. Computer Science Laws

We are fortunate that we have
good laws to understand this

new world!

The 4 Performance Laws

The following 4 laws are important to
understand for software performance

1. Moore's Law
2. Little's Law
3. Amdahl's Law
4. Gunter's Law

Moore's Law

The number of integrated
circuits double every year

L = λ * W

Throughput = Arrival Rate * Wait time

Little's Law

500 (L) = 1000 (λ) * 0.5 (W)

Average number of people =
arrivals per hour * length of stay

Little's Law - Example

Amdahl's Law

Amdahl's Law - Inverse

Amdahl's Law - Examples

P = Percentage of algorithm that can be made faster
S = How much the algorithm can be sped up

Examples of P and S values

P = 0.3 30% of the algorithm can be made faster
S = 2 the algorithm can go twice as fast

Gunter's Law

Describes the relationship between Concurrency,
Contention and Coherency

Coherency is the cost of the
communication overhead between nodes

If coherency is 0, then Gunter's Law == Amdahl's law

3. Challenges with Java and the JVM

● Write Once Run Anywhere (WORA)

● Cost of the strong memory model

● Garbage Collection (GC) Scalability

● Container and Virtualisation support

Write Once Run Anywhere (WORA)

● CPU Differences
○ When are you allowed to cache or reorder?

● File System differences
○ O/S level support for symbolic links etc

● Display devices
○ Impossible to keep up with new hardware!

Write Once Run Anywhere (WORA)

● Native library support differences
○ Not all native libraries are equal!

● Operating System threading models
○ Threads are scheduled very differently

● No real GPU support

Cost of a strong memory model
● The JVM is very careful

○ Correctness > Performance!

● Locks enforce correctness
○ High cost to performance

● Locks define regions of serialization
○ Remember Little's law and Amdahl's law?

● JVM traces live objects
○ Larger heaps usually means more objects
○ GC takes longer to find live objects
○ GC takes longer to manage heap during a collection

● No value types or structs in Java
○ Lots of inefficient object creation

Garbage Collection (GC) scalability

● Java does not access virtualisation data
○ Always thinks it is on bare metal
○ Makes bad choices because of missing information

● No direct support for containers
○ For example, Docker

Container & Virtualisation support

4. Java performance, hard to diagnose

You have to combine metrics from Java with
metrics from:

● CPU, Memory
● Disk I/O, Network I/O
● Virtualisation, Containers

Metrics create a Big Data Problem
Because we do not know what we are

looking for, we try to collect billions of points of data

There is a large cost to
collecting, transmitting and storing

metrics data

Example of a lot of metrics data

Java Diagnosis - GC Example

Java Diagnosis - Threads Example

Java performance is hard to diagnose

The previous 3 slides showed examples of
metrics being shown in graphs or in a log file.

This is not as helpful
as it could be!

Analytics > Metrics

Humans are now finding it very hard to do
proper analysis. We have to:

1. Understand the Laws
2. Understand Hardware, O/S, Java & Code
3. Process billions of points of data

Small as it is, the sparrow has all the vital organs

麻雀虽小,五脏俱全

The Future - Analytics

We think that the future is applying
advanced statistics & Machine Learning

over metrics

The Future - Analytics > Metrics

I will now show an example of how we take
metrics about Garbage Collection and reduce

them to come up with some analysis.

At the beginning we have lots of raw metrics!

What should we look at?

At the end we have a simple trend line

This is much better!

What should we look at?

There is both young gen and old gen data

Now we only look at old gen data

Much less data!

Bottom hull curve (the troughs)

Top hull curve

We've filtered out the Spikes and the Startup anomaly

The troughs that remain are giving us the real analysis

Now we have a simple trend line

It gives us the trend line on how much
memory Java needs to keep running

● We removed most of the data!
○ We no longer have a Big Data problem

● We have made the information much simpler

● We can now perform analytics!

Now we can perform analytics!

We have a memory leak
at 50Mb/hour!

We know at 00:00 that in
36 hours this JVM will fail!

Now we can perform analytics!

● We can tell you it is a memory leak
○ 50Mb / hour!

● We can predictively tell you when your JVM
will have an OOME

● There are many other analyses possible...

Conclusion

● Hardware has changed

● Remember your performance laws!

● Java is not optimised for the new world

● It is hard to diagnose Java with only metrics

● The future is Analytics!

Credits
Kirk Pepperdine - jClarity (CTO)

John Oliver - jClarity (Chief Scientist)
Ben Evans - jClarity (Tech Fellow)
Kerry Kenneally - jClarity (UI/Ux)

谢谢

www.jclarity.com - martijn@jclarity.com

