
From Containerization

to Modularity

by @oasisfeng

Modular Future of Mobile Ecosystem

Modular hardware lead to modular software

Modular Hardware

• Smartphones become modular
• Prototypes: Project Ara, Phonebloks

• Products: LG G5, Moto Z

• More devices are connected
• Smart accessories (wristband, BT devices)

• Connected devices (smart watch, home kits)

• External hardware

• Secondary display

• Dock-hub with keyboard & track-pad (or mouse)

Modular Software

• Software becomes even more modular in an open ecosystem.

• Android itself becomes more and more modular.
• Assembly: Android Wear & TV, 3rd-party ROM

• Pluggable: IME, TTS, Doc Provider, Notification Listener

• Forkable: Shared Library (Services & Shared), System UI*

• Modular app ecosystem
• Launcher, Widget, Lock Screen, Live Wallpaper, Complication (Wear)

• Google Docs & Sheets Addons

• Community-driven: Tasker, Xposed, Nevolution, Island...

• The future of mobile belongs to the union of small teams and individuals.

https://github.com/android/platform_frameworks_base/commit/c683da6bb38d5aad3640a26d901d7c7c5b4e8f54

Modular App Architecture
Every modular is a tiny app

What is Modularity?

• Modules separated by certain level of isolation

• Characteristics
• Independent

• Interchangeable

• Interoperable

• The price
• Confine

• Contract

• Compatibility

Why Modular?

• Engineering
• Enforced decoupling for high-cohesion code.

• Module-independent (parallel) development and testing

• Flexible integration, deployment & upgrade

• The infamous "64K methods limit"

• Product

• Selective installation (light-weight initial install)

• Hybrid-friendly (web & native, mix and match)

• Open to (3rd-party) extensions

Basic Solutions

• Java packages
• Pros: lowest cost

• Cons: loose isolation

• Gradle library modules
• Pros: tool-chain support

• Cons: build efficiency

• Multiple APKs
• Pros: build & install time (development productivity)

• Cons: Less user-friendly

In-House Modular Frameworks

Mainstream approaches in the wild:

• Multi-Dex: Inject dex-elements
• Pros: Easy to implement, taking full advantage of AOT & JIT

• Cons: Weak isolation

• Container: Proxy components by hooking. (DroidPlugin)

• Pros: Direct APK loading

• Cons: Massive reflective hooking (prone to compatibility issues)

• Semi-container: Transparent merge with class-loader proxy. (Atlas)

• Pros: Light-weight, modest hooking, minimal module constraints

• Cons: Runtime AndroidManifest lock-in

https://github.com/DroidPluginTeam/DroidPlugin

The Adventure of Project Atlas (Taobao)

• 1st gen (2012 - 2013): Container-based
• Goal: Fast and easy (business) plug-in integration across BUs.

• Challenge: Compatibility (both ROM and plug-in)

• 2nd gen (2013 - 2014): Semi-container
• Goal: Compatibility, reliability, maintainability.

• Benefits: 50% less code, 80% less reflective-hooking.

• 3rd gen: (2014-): Semi-container with flexible module management
• Goal: Deploy by module » Deploy-on-demand by UI pagelet (like web)

• Benefits: Agile development, fast deployment, incremental installation.

The Problem

• A complex framework for mixed purposes
• Modularity, incremental deployment, runtime upgrade and even hot-fix

• The reality
• A big mess of compromise and inefficiency

• The way out – Layered frameworks for separate purpose
• Modularity framework, to modularize the project structure.

• Runtime container, to manage deployment and upgrade.

• Hot-fix mechanism, for highly efficient and fast bug-fix.

Well-Known Open Source Containers

• They are actually much more complex beyond your imagination.

• Despite open sourced, it is still hard to evaluate.
• Check out its compatibility list (Android versions, Dalvik / ART, Devices)

• Check out its issue tracker

• Check out the KNOWN ISSUES in README or wiki

• Check out the LIMITATIONS in README or wiki

Be careful about projects with few KNOWN ISSUES and LIMITATIONS.

The Future of Runtime Container

• The Android infrastructure
• Split-APK (Android 5+): Requires modular project

• Instant App (Google Play services): Requires highly modular project

• Ephemeral App (Android 7+): Possibly requires modular project *

• Runtime container as a platform (Virtual App)
• Hack existent app (like Xposed for apps, without root)

• App automation (like UiAutomator for user)

• Privacy concerns (that’s why it should be open sourced)

https://github.com/asLody/VirtualApp

Life is hard, don't waste your time!

Talk is cheap, show me the code!

Advice for Practice

• If you are a small team or developing a fast-iterating product
• Modularize your project as early as possible.

• Avoid developing in-house runtime container.

• Adopt open-source hot-fix solutions.

• If you are a large team, focus on shared low-level platform.
• Layer your frameworks, do modularization first.

• Avoid container-based approach, unless it’s your product model.

• The forbiddance enforced by developer agreement of Google Play Store

• Plan the exit route of containerization within its core design.

Our Practice - Bare Modularization

• Project: Regular Gradle project with modules

• Module: Hybrid (Sample: github.com/oasisfeng/nevolution)

• Act as application module in debug, but as library module in release.

• Build
• Debug: One APK for each module with shared UID

• Release: Single APK for all modules together

build.gradle of module assembly-public

ext.assembly = gradle.startParameter.taskNames.find { it.startsWith(":assembly-public") } != null;
if (ext.assembly) {

configure(subprojects.findAll { ! it.name.startsWith("assembly-public") }) { apply plugin:'com.android.library' }
} else configure(subprojects.findAll { it.name.startsWith("decorators-") }) { apply plugin:'com.android.application' }

AndroidManifest.xml of module assembly-public

<manifest ... tools:remove="android:sharedUserId,android:sharedUserLabel" />

https://github.com/oasisfeng/nevolution

"Bare" means A LOT

• Minimal efforts, pure Android development experience
• Fully managed by Android Studio & Gradle, without extra tools, plug-ins

• Future-proof for your development investment

• Effective building and debugging in large project
• Just build your module only, not the whole project.

• Only install the APKs of dependent modules.

• Only upgrade the APKs of changed modules.

• Inherently compatible and friendly with most runtime containers
• Split APKs (Android 5+), Instant Apps (Google Play)

• Hot-patch solutions: Tinker, Instant Run (Android Studio)

Dependency Injection

• DI in pure Android way
• Intent against intent filter

• AndroidManifest – The dependency configuration

• Gradle build types & variants – AndroidManifest override for different scenarios

• Comparison to the classic DI frameworks (JSR-330 based)
• Share components beyond app boundary.

• IPC (multi-process) support.

• Completely lazy.

• User re-configurable. (ActivityChooser, DocumentsProvider)

• Highly interoperable. (No library required)

Flexible UI bus

• Activity identified by URL (fragment by # within URL)

<activity android:name=".XxxActivity“ ... >
<intent-filter android:priority="1" > <!-- priority higher than catch-all WebViewActivity -->

<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<data android:scheme="http" android:scheme="https" android:host="www.example.com" android:path="/xxx" />

</intent-filter>
</activity>

<activity android:name=".WebViewActivity“ ... > <!– The catch-all web container activity -->
<intent-filter android:priority=“0" > <!-- priority lower than local Activities -->

<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<data android:scheme="http" android:scheme="https" android:host="www.example.com" android:pathPrefix="/" />

</intent-filter>
</activity>

• Hybrid handling: Native if module installed, web as fallback.

Flexible UI bus (cont.)

• Browser  App: Capture standard HTTP links in browser
<activity android:name=".XxxActivity“ ... >

<intent-filter android:autoVerify="true" android:priority="1" > <!– App Links -->
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" /> <!-- Only if to be captured in browser -->
<data android:scheme="http" android:scheme="http" android:host="www.example.com" android:path="/xxx" />

</intent-filter>
</activity>

• Fully compatible with Verified App Links (Android 6+)

• Support Deep-Link (including "android-app" schema)

• Login can be handled with URL redirection and "referer" (nav. back).

• Standard-compliant, pure Android, cross-platform and future-proof.

Light Infrastructures on top of "Bare"

• Services to simplify the usage of AIDL service

• AidlService to reduce boilerplate code of AIDL service.

• LocalAidlServices for highly efficient local AIDL service.
• Synchronous service binding, no more hassles about ServiceConnection

Reference implementation: https://github.com/oasisfeng/deagle/.../com/oasisfeng/android/service

Services.use(context, INevoEngine.class, INevoEngine.Stub::asInterface, engine -> engine.evolve(...));

public class NevoEngine extends INevoEngine.Stub implements NevoEngineInternal, Closeable {

@Override public StatusBarNotificationEvo evolve(...) { ... }

public static class Service extends AidlService<INevoEngine.Stub> {
@Override protected INevoEngine.Stub createBinder() { return new NevoEngine(getContext()); }

}
}

final INevoRules rules = Services.bindLocal(context, INevoRules.class);

https://github.com/oasisfeng/deagle/.../com/oasisfeng/android/service

Other Hiccups You May Experience

• Where to place .aidl and related files
• Avoid AIDL interface between independent modules. (consider broadcast)

• Separate interface module for service module. (engine & engine-api)

• Libraries are built into every dependent modules, state not shared.
• Redundant only in debug build, no difference in actual behaviors.

• Library should NEVER share state between modules.

• Use (wrapper) service if state needs to be shared.

• Share UI among modules
• Consider self-contained Activity in one module.

• Share M+V (fragment & layout) in library module.

Thanks
@oasisfeng
anywhere

