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e About Me

* Farther of a 4 years’ boy
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e About Me

* Worked for 10+ years.
e @Splunk
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Agenda

* Background

e Definition

e Role in Data Infra
* Requirement

* Problem

* Challenges
* Requirement

e Solutions
 Overview
* Luigi
e Airflow

* Demo
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You will learn:

* Role of workflow scheduler for data engineering in
ecosystem.

* Challenges and key requirements.
 Solutions and general differences.

* Architecture, design and practices of using Airflow
and Luigi in Python

* Pitfalls and common patterns in design to use a
workflow scheduler
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Definition

T k5% wjo1212@163.com



e Definition

Big Data Workflow Scheduler

Schedule and manage dependencies of workflow
of jobs in data infrastructure, mainly used in
offline and near-line system.
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¢ Big Data Work-flow Scheduler

Jobs & Tasks

M

Big Data Systems

Work-flow & Dependency
Scheduler
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Different with below categories:

* BPM
e Like Activiti

* Middleware workflow & SOA
* Like AWS Simple Workflow

* Pure Data Driven Pipeline/API for Development

* Like Apache Crunch, Apache Cascading, AWS Data
Pipeline, Azure Data Factory

* Pure Streaming Process
* Like Storm, Spark Streaming

T K98 wjo1212@163.com

10



Role in Data Infra
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e Hadoop 2.0
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e Hadoop 2.0
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e Airbnb Data Infra
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e Linkedln Data Infra

Kok wjol1212@163.com
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e Linkedln Data Infra
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Data of workflow scheduler in Big Data

* 14 boxes dedicated for work-flow system
* 8,000 tasks daily

Linked [T}

* Maintain 3 instances of work-flow system
2,500 flows, 30,000 jobs daily

* 2000+ tasks, 10,000+ Hadoop jobs daily
(U9t

"
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What’s the most important for a
Big data workflow scheduler ?
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Dead Simple:
- Easy to use and configure

T K98 wjo1212@163.com

19



Problems with big data job
scheduling
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e Typical Challenge
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Co Fragile process
o>
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e Fragile process

Push to Production
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e Fragile process

Push to Production
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e Fragile process

A/B Testing

Push to Production
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Push to QA
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Fragile process

Alert When
failure

A/B Testing

Push to Production
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Push to QA
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o Example: Netflix Recommendation System
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Fragile Failure Handing
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2. Job fails due to system or network
may not be temporarily not available

3. Some errors or bugs may
exist in some jobs’ logic

1. Scheduled triggers are skipped due
® to unavailability of sub-system

4, Performance is slow especially
for some critical steps
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Requirement
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® Basic Needs

O
Co;l

T Calendar Based Schedulin
Work-flow & Dependency JolgReRpion ;

»)

Log Access & Monitoring Notification Failure Tolerance & Backfill
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® Advanced Needs

Complex Rule Programmatic

Scalability High Availability
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Operator OOB

SLA Monitor & Alert
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® Advanced Needs (cont’)

Queue (Affinity) Data Profiling

P 0] 0] L

Pool (Limit concurrency + priority)  Event Driven Scheduler
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Versioning

Plugins
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Solution Overview
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e Options

Airflow

(Uigt
Cron
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e Solution Overview

Basicinfo_|Luigi | Aflow | Arkaban | Oozie

Language Python Python Java Java
Github Stars 5,274 3,422 780 354
Contributors 256 178 37 18
Latest Version 2.3.1 1.7.1 3.1 4.2
History 4 years 1+ years 6+ years 6+ years

Invented by Spotify Airbnb LinkedIn Yahoo

Owned by Spotify Apache Apache Apache
Incubator

T 2k58 wjo1212@163.com 36



e Azkaban

* Pros:

* Born for Hadoop
» Support all Hadoop, hive, pig versions

* Easy to use Web Ul:
e Good Job visualization and monitoring

* Flexible Module structure/Plugins

e Cons:

* Properties files based configuration

* Web Ul only, No CLI and REST interfaces (need
3" party AzkabanCLI)

* Limited execution path control
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e Azkaban GUI
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o (Qozie

* Pros:

* Born for Hadoop
e CLI, HTTP, JAVA APl interfaces
e Support extended Alert integration

 Cons:

* Higher learning curve
* PDL style XML based configuration

* Limited Web Ul (need Cloudera Hue)
* No resource control
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(U9t Luigi
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e (Qverview

* Pros:
* Programmatic by Python
* Modeling is simple, Code is mature (~20K LOC)
* Good support Hadoop (MR, logs, dist)
* Test friendly, support local scheduler

* Cons:
* Web Ul is very limited
* No built-in trigger (need cron)
* Not design for large scaling (> 100K tasks)
* No support distribution of execution
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e Task Definition

Setup Dependencies:
Return one or more Tasks

Output of the Task:
Return one or more Targets
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e Task Example
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e Task Execution
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e Architecture

Also a web server
Luigi central planner

A
/, \\
,/ \\
¥ X
Luigi worker 1 Luigi worker 2
A A C
v '
B C F
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Architecture Notes

* Mainly manage the dependency and de-dup
the task running.

* Mainly focus on data pipeline ETL.

* Limitations
* No calendar trigger
* Web Ul is very limited

* Too couple between worker and scheduler (not
support > 100K tasks)

* Execution is bundled on specific worker
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e Web Ul — execution status
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e Web Ul — DAG visualization
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Task and Targets Library

* Google Bigquery

* Hadoop jobs

* Hive queries

* Pig queries

* Scalding jobs

e Spark jobs

* Postgresql, Redshift, Mysql tables

* and more...
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Airflow
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Overview

* Pros (we will see):
* More General Flexible Architecture
* Very compelling Web Ul
* Lots of cool features OOB, Rich Operator library
 Fast growing adoption (30+ companies)
 Test friendly (test mode and SequentialScheduler)

* Cons:

e Coding quality is not so mature (UT coverage is
not high)

* No event driven scheduler (same to all others
solutions)
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Airflow Tech Stack

e Python Code ( < 20K LOC)
* DB: SqlAlchemy
 Celery for distributed execution

* Web Server: Flask / gunicorn
* Ul: d3.js / Highcharts / Pandas
* Templating: Jinjia2
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Airflow Web

O
C<>3

Work-flow & Dependency Log Access & Monitoring Data Profiling
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e Web Ul — Overall status
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e Web Ul — workflow visualization
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e Web Ul — execution history
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e Web Ul - performance profile
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e Web Ul — Performance stats over time
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e Web Ul — Deep dive for task execution
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Airflow Concepts
CO
.

Work-flow & Dependency Operator OOB
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e DAG (Directed Acyclic Graph)

DAG: a collection of tasks
w/ scheduling settings

Task: an instance of BashOperator
Support templating

An task of another kind of
PythonOperator

Setup the dependencies
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e DAG execution

Dagl Run (2016-9-1)

Task1 Instance Task1 Instance
— (2016-9-1) (2016-9-1)

Task3 Instance
N\ (2016-9-1)

/
/

\
l' 1 \ N
' ‘ \ Dagl Run (2016-9-2)
HiveOperator I ' 1 , \
Hive Hook :
|

. PythonOperator \
\

Dagl Run (2016-9-3)

PigOperator
Pig Hook
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Concepts — DAG, DAG Run

* DAG

* A collection of Tasks
* Setting of Calendar Scheduling

* Dag Run

* A run instance of DAG with a scheduled
date (ID: dag, start time and interval)
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Concepts — Operator, Task and Tl

* Operator
* Task templates

* Task
* Instance of a Operator

* Task Instance (TI)

* Belong to Dag Run

* A run instance of a Task with a scheduled
date (id: dag, task, start time and
interval)
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Concepts - Operator

* Operator

* Task templates, general categories:
* Sensor
* Branching
* Transformer

* Settings of Trigger Rules, retry etc.

* Use Hook for real operation w/ external
systems
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Operator Library

Google Bigquery, Could Storage
AWS S3, EMR

Spark SQL

Docker

Presto

Sqoop

Hive jobs

Vertica

Qubole

SSH

Hipchat, Slack, Email
Postgresql, Redshift, Mysqgl, Oracle etc.
and more...
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Parameterized Tasks

* Variables
* Global parameters

e Connections

* External system’s connection string, confidential, extra
parameters etc. Normally used by Hook.

* DAG Parameters/Macros

* Templating
* Using Jinjia for batch or any places that fit

e Xcom
 Share data between Tasks
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Architecture Insight

1

Scalability High Availability Versioning
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e Airflow Architecture (Local Scheduler)

Hive
Web Servers
HDFS

MySQL

Workers Cascading

Spark

Presto

Scheduler
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e Local Scheduler —w/ version control

Hive

Web Servers

Master Repo HDFS

MySQL

Cascading

Spark

Code Repo Presto

Scheduler
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e Airflow Architecture (Celery Scheduler)

Hive

lllIIH!!I!!I!!IIl

[ } . Cascading

HDFS

MySQL

Spark

} Presto

Brokers (MQ) }

,[
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e Celery Scheduler — w/ version control

Hive
Web Servers
/ HDFS
| master Repo |8

MySQL

[ } Cascading

Spark

Presto

Code Repo

Brokers (MQ) J
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e Airflow Architecture - HA

Workers
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Hive
HDFS

MySQL

Cascading

Spark

Presto
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Workflow Patterns

Complex Rule
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e Process in parallel

[success] [running] [failed] skipped
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e Switch

[success] [running] [failed] skipped
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e Sub Dag

 Easier to control, re-use and

* Just like a component in coc
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e Trigger Rule — all success

(success) [ running | (failed ]  skipped

Triggered by
/ “all_success”
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e Trigger Rule — one success

(success) [ running (failed ]  skipped

Triggered by

“one_success”
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Scheduling Practice

Calendar Based Scheduling
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e Calendar based scheduling (UTC)

Time zone is

always UTC
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e Scheduler —interval in workflow

Every Dag Run will
only start when next
Dag Run’s execution

time meets

|
|
|
1
I
|
l
|
|

-7 g Run at 04:00:00
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e Scheduler — recursive running

Run1 (09-01 00:00)

Run2 (09-01 04:00) 31

What if output file in Runl and Run2 impact each others?

Try best to avoid this kind of design
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¢ Principle when defining Task

Task granularity should be proper
- Choose “Right size” for one task
- Task should execute simultaneously

Each Task should be atomic
- isolation from concurrent processing
- Either succeed or failure, no grey state

- Failure will not impact the system
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¢ |dempotent Task
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Cleanup env

when failure
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It’s ideal case, in real cases...
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e Scheduler —recursive dependency

Run1 (09-01 00:00)

Run2 (09-01 04:00) \

What if read_file in Runl and Run2 cannot run in parallel
due to external system’s limitation

Assign a pool with 1 Slots to for task read_file

Turn on option “depends_on_past” for task read_file
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e Resource Control

P 0] 0] L

Pool (Limit concurrency + priority)
Queue (Affinity)
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e Scheduler — more recursive dependency

Run1 (09-01 00:00)

Run2 (09-01 04:00) \

What if read_file in Run2 replies on output_file in Runl

due to restriction or necessary stateful design?

Turn on option “wait_for_downstream* for task read_file
(This will force to turn on “depends_on_past”)
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e Scheduler —recursive dependency pitfall

ﬂ@once’ just one time\

start_date and schedule_interval should be aligned

2016-09-08 00:00:00 s aligned
2016-09-08 02:00:00 is NOT aligned

This will make the DAG failure if the option
“depends_on_past” is turned on
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Some other notes

* Update the dag id when changing the logic
inside

* Using SLA alert for critical tasks

* Feature in plan:
* Event Driven Scheduler
* Mesos Scheduler
* More operators
* More syntax sugar
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Demo
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Now you’ve learned:

* Definition and ecosystem.
* Challenges and key requirements.
* Solutions and general comparisons.

* Most important part of Airflow and Luigi
* Architecture, design, patterns, pitfalls and practices etc.
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