Executing code in the TrustZone land

Edgar Barbosa
SyScan360 - Shanghai
2016

Me

e Edgar Barbosa
o Senior Security Researcher

o COSEINC - Singapore
o https://google.com/#qg=Edgar+Barbosa+COSEINC

o twitter.com/embarbosa

https://google.com/#q=Edgar+Barbosa+COSEINC
http://twitter.com/embarbosa

Agenda

e What is TrustZone?
e TZ Applications

e TZ Architecture

e Secure Boot

e Executing TZ code

e Reverse Engineering

Disclaimer

e This talk provides only introductory level information about
TrustZone

e There are so many undocumented things about TrustZone

that's not even funny to talk about. Some things also requires
signing NDA ©_8

e The Android ecosystem is a huge mess!

e Btw, is Android really open source?

TrustZone (TZ)

e TZ is a set of security extensions added to ARM processors

e Can run 2 operating systems
o secure operating system

o normal operating system

e Hardware protection/isolation of memory and devices

2 worlds

https://genode.org/documentation/articles/trustzone

https://genode.org/documentation/articles/trustzone

Features

Applications

e Secure storage of crypto keys/secrets
e Trusted User Interface (keypad/screen)
e DRM (obviously!)

e Payment solutions

Applications

TrustZone - architecture

ARM Execution Levels (EL)

4 executions levels (EL):

e ELO - usermode

e EL1 - kernel (normal OS)

e EL2 - hypervisor

e EL3 - highest level (secure OS) - TrustZone

TrustZone EL

Trusted Execution Environment - TEE

TEE

e source: https://www.cs.helsinki.fi/group/secures/CCS-
tutorial/tutorial-slides.pdf

https://www.cs.helsinki.fi/group/secures/CCS-tutorial/tutorial-slides.pdf

Qualcomm Secure Execution
Environment - QSEE

e TEE from Qualcomm (driver is open source)

SMC

e Secure Monitor Call instruction

e Requires kernel (EL1) privilege to be executed
o Need a device driver

o Linux kernel provides some functions
e The bridge between the secure and normal world

e There is usually an interface between user-mode applications
and TEE device drivers

SCM - Linux kernel

171 static w32 smc (w32 cmd addr)

172 |

173 int context id;

174 register u32 r0 asm("r0") = 1;

175 register u32 rl asm("rl1") = (u32)&context id;
176 register u32 r2 asm("r2") = cmd addr;

177 do [o

178 asm volatile(

179 __asmeq(TE0r, "riv)

180 __asmeq("El", "ri")

181 __asmeq("E#2", "rl")

182 asmeq(3", "r2")

183 Teme T #0 @ switch to secure world\n”
184 o m=r" (rx0)

185 : omer (eOY, "rv o (rl), "rv (r2)
186 L owpgmyr L S -
187 } while (r0 == SCM INTERRUFTED) ;

188 g

189 return rQ;

190 3 .

http://Ixr.free-electrons.com/source/arch/arm/mach-msm/scm.c?
v=3.0#L171

http://lxr.free-electrons.com/source/arch/arm/mach-msm/scm.c?v=3.0#L171

Secure Configuration Register

e co-processor CP15 c1
e defines current world as Secure/Non-secure

e accessible in secure privileged modes only

NS bit

e Non-Secure bit

[0] NS bit Defines the world for the processor:
0 = Secure, reset value

1 = Non-secure.

e |n Secure mode the state is considered Secure regardless of
the state of the NS bit

World switch

e src: https://www.cs.helsinki.fi/group/secures/CCS-
tutorial/tutorial-slides.pdf

https://www.cs.helsinki.fi/group/secures/CCS-tutorial/tutorial-slides.pdf

Learning TrustZone

e What options do you have if you want to learn TrustZone by
creating real code to run with TZ privileges?
o ARM Development boards

o QEMU

Poor Mr Gigu

OMAP 4430 - Texas Instrument (TI)

OMAP 4430 - TrustZone support

You'll have a very hard time

http://stackoverflow.com/questions/7955982/arm-trustzone-
development

http://stackoverflow.com/questions/7955982/arm-trustzone-development

Trustzone development

e To be fair the situation now is better.
e More information available on the web

e Open-source reference implementations

QEMU

e The good folks at Linaro implemented a patch to allow QEMU
to run TrustZone extensions

e http://www.linaro.org/blog/core-dump/arm-trustzone-gemu/

e But | need to run TZ code on a real device!

e Let's find away to doit!:)

http://www.linaro.org/blog/core-dump/arm-trustzone-qemu/

TrustZone - Secure Boot

TrustZone - Secure Boot

e "SecureBoot is an on-chip, tamper resistant, ROM-based boot-
up process that verifies the authenticity and integrity of critical
code and data stored in flash memory."

e "The secure boot process controls the system immediately
after reset by executing a known code resident in on-chip Read
Only Memory (ROM). This code is the system'’s root of trust,
and authenticates the code used by the device."

Chain of Trust (CoT) - Boot (1/2)

TrustZone code integrity is protected by secure boot which is
based on a Chain of Trust (similar to TPM chipsets):

1. After reset the device starts executing the PBL (Primary Boot
Loader)

2. The PBL is stored in read-only-memory (ROM) - it is the initial
point in the chain - it is a trusted code.

3. Now each step of the boot process will load and authenticate
the next step module/code before executing it!

CoT (2/2)

4. The PBL will load and authenticate the Secondary Boot Loader
(SBL)

5. The SBL will load and authenticate the TrustZone code

6. SBL will then load the Android kernel (aboot partition) and
execute it

Device is Powered On
Executs
PBL {mask ROM)

Verify & Load

—

Verify & Load

+l"rer-rﬁ'l : Lﬂad“

Verify & Load

——

Verify & Load

¥

— Is Bootloader Locked? o

Yes — Verify & Load Mo - Load

.--‘

[src] http://bits-please.blogspot.sg/

http://bits-please.blogspot.sg/

The target device

Xiaomi Redmi Note 2

Xiaomi Redmi

e A very nice Android phone
e Clean Ul

e Comes with just a few apps
o Different from Samsung that comes with tons of useless

apps
e Cheap. Great value for the money

e Best of all: allows me to run my TrustZone code :)

Attack surfaces

e QSEE/TEE devices (ioctl)

e TrustZone system calls (accessible using SCM instruction)
o requires priviledged access

e There is another attacker surface that has been ignored
probably because it should obviously brick the device.

Remember Secure Boot?

e This is how it is supposed to work

|

OS Kernel checkej

] K
Boot block | checker |- pass/fail
—1 _J

Secure boot

Xiaomi Redmi

e The Xiaomi Redmi secure boot process will not fail if you
overwrite the TrustZone partition!

e The Secondary Boot Loader will load, authenticate and execute
the new TrustZone image regardless of the authentication
result!

How?

Two methods:

® fastboot flash patched tz.img
® dd if=patched tz.img of=/dev/block/.../tz - root required

 |tjust works!

What now?

e \We can run our own TZ code

e \We don't need to create a secure OS from scratch
o also, we don't have access to all the documentation we
need for such a herculian task

e We can use the available TZ code and patch it

e But before, we need some reverse engineering of tz.img

Reverse Engineering TrustZone code

Reversing

Obvious first steps:

1. Locate and copy the Trustzone partition
2. Disassembling

3. Analysis

4. ARM code generation

5. Patching

TZ partition - block devices

TrustZone

e 2 TrustZone images tz and tzbak . They are the same. If tz is
corrupted, tzbak is loaded instead.

e Just copy it using dd

Lrwxrwxrwx root root 2014-01-14 00:11 tz -> /dev/block/mmcblk0Op8
Lrwxrwxrwx root root 2014-01-14 00:11 tzbak -> /dev/block/mmcblk@Op9

Strings Paradise!

System calls

e TrustZone system calls are a good initial target for patching

 Now that we have access to the trustzone image let's start by
locating the exported system calls.

e You can find the name of the system calls using strings and
grep

Syscalls

Syscalls - no xref

Searching xref

arsion: 5

s0r : ARM

chitecture: metaarm
assembler: Generic assemb
3x : Little endian

. type: Pure code
AREA LOAD, CODE, A
; ORG 0x86500000
CODE32

‘s,‘ Binary search

Enter binary search string:

String |865360B1

[] Match case (® Hex
|:| Unicode strings O Decimal
[] Search Up O Octal

Find all occurrences

OK Cancel Help

EXPORT start

; DATA XREF: start+1B0Olo

(I 5.l |

Search result

2 X [EIDA View-A ® Occurrences of binary: 865360B1 ©

i1 Strings window Gl
“ | Address Function Instruction
LOAD:86546E60 DCB 0xB1 ; @

Pointer to syscall name

Pointer to the syscall code

tzbsp_pil_init_image_ns syscall

sub_8650AF6C

CMP RO, #7
PUSH {R4,LR}
BEQ loc_8650AF78
¥ _ L
[l i = =
POP.W {R4,LR}
B sub_8650AE2C||loc_8650AF78
MOVS R2, #0x1E
ADR.W Ri, aU_9 ; "(%Zu)"
MOVS RO, #3
BL sub_8650B9EC
MOV RO, #O0xFFFFFFFO
POP {R4,PC}
3 End of function sub_8650AF6C

There is a pattern!

SMC table format

e Detailed table format explanation:
o http://bits-please.blogspot.sg/2015/08/exploring-
qualcomms-trustzone.html

e Now we can patch a system call

http://bits-please.blogspot.sg/2015/08/exploring-qualcomms-trustzone.html

Patching ELF headers (segments)

e There is only one executable segment on the original TZ image
e The first experiment was to patch the get_version system call

e To give more space for the new code we expanded the
segment to the maximum allowed value

Patching ELF headers (segments)

e Expand (maximize) eXecutable segment
O range 0x86500000 - 0x865351b8

© range ox86500000 - 0x86536000

Patching get_version

|BEQ Locret_86508EBé|

. P ; TPl
'FFC POP.W

loc_86508EDO MOVS
N Bh sub_865351D0 ADR

NOP B.W

NOP

STR RO, [R4,#0xC]

POP {R4+-R6,PC}

; End of function sub_86508E94

Yy

lall i (=]

locret _86508EB6
POP {R4-R6,PC}

Patching problems

e | created a new function at the end of the expanded segment
and patched the get_version with a branch to the new
function.

e |t works! get_version was returning a new value.

e To have even more space to create new functions | decided to
create a new segment in the TrustZone image

Patching ELF - new executable segment

New segment

e Patched get_version again to branch to the new segment
e Phone freezes for a while and reboots!

e Suspected the reason is some memory protection after triple-
checking the permissions of the new segment

e Solution: disable memory protection!

DACR register

e Domain Access Control Register

e All regions of memory have an associated domain. A domain
Is the primary access control mechanism for a region of
memory.

e Holds the access permissions for a maximum of 16 domains.

e Protection of each domain encoded inside 2-bit fields

DACR register

e 11 - Access not checked!

Patching

e After disabling DACR, executing code in the new segment
works!!!

e Only one problem!
o The phone freezes if you try to shutdown the phone!

e Somehow the disabled DACR protection interferes with the
shutdown process.

e Solution?
o Disable DACR before jumping to the new segment

o Enable DACR again after return!

Patch - DACR disable/enable

sub_86535200 ; CODE XREF: sub_865351D0+4Tp
var_28 = -0x28

STMFD SP!, {R1-R8,LR}

STR RO, [SP,#0x24+var_28]!

MOV RO, #OxFFFFFFFF

HCR pi5, 0, RO,c3,c0, O 5 DISABLE DACR

LDR RO, [SP+0x28+var_28],#4

STR LR, [SP,#0x24+var_28]!

BLX loc_86574000 ; BRANCH TO NEW SEGMENT

LDR LR, [SP+0x28+var_28],#4

STR RO, [SP,#0x24+var_28]!

MOV RO, #0x55555555 ; ENABLE DACR

MCR pi5, 0, RO,c3,c0, O

LDR RO, [SP+0x28+var_28],#4

LDMFD SP!, {R1-R8,LR}

BX LR

; End of function sub_86535200

Generating ARM code

e At the start of the project | had only 1 option: to use GNU as
assembler. It was a nightmare!

e Fortunately some months later the Keystone Engine assembler
framework was released and | could use Python to generate
the arm code! Easy!

e http://www.keystone-engine.org/

http://www.keystone-engine.org/

Executing your code

e Just create a device driver

e Linux provides the scm and scm_call functions!
e Tip:
o Sometimes building the open source Linux kernel of an

Android device is an impossible mission
= Again, is Android really open source? :)

o You can extract the symbols of the binary kernel using this
little wonderful tool: https://github.com/glandium/extract-
symvers and build your device driver

o "Building a Linux kernel module without the exact kernel
headers": https://glandium.org/blog/?p=2664

https://github.com/glandium/extract-symvers
https://glandium.org/blog/?p=2664

Undocumented

e That's all you need to create TZ code for your device
e \We need more reverse engineering of TZ

e There are some functions that are really difficult to
understand/reverse

e References to devices and memory mapped I/O regions where
| couldn't find any documentation

Reversing TZ - Bad news 8_8

e Things are changing...

e They removed the tzbsp strings and modified the syscall table
format!

O (J o|:|°) J AJ—I—

Not all is lost yet

e |atest version of Xiaomi TZ (this week)

e There are still a few tzbsp strings available

LAIALnuannd,,, wasy

LOAD:0000000... 000DDO0E
LOAD:0000000.,. 00000023
LOAD:0000000... 00000034
LOAD:0000000... 0000002E
LOAD:0000000... 00000027
LOAD:0000000... 00000025
LOAD:0000000... 00000016
LOAD:0000000... 0000001D
LOAD:0000000... 0000001C
LOAD:0000000,,, 00000005

[e

W,

EIEEEEE

v

W,

T Ty e o

Lé KITI_UPPEN_LITI_SESSIUTE Aol | euj i
tz_mpu_rg_cfg

tzbps_es_set_ice_key: invalid bufin
tzbps_es_set_ice_key: invalid request parameter(s)in
tzbsp application rpmb version rollback label
tzbsp version counter cipher key label

tzbsp version counter hmac key label
tzhsp_hmac236 failed!
tzbsp_psci_cpu_boot_notifier
tzbsp_register_isr() failed

to'We

Same process applies

00865E8B2C : DATA X sub_B86586FF0+114To
00865E8B2C (

Q00B65ERB2C aTzhps_hs_set_ﬂ DCB "tzbps_es_set_ice_key: invalid buf®,0xA.0

_____ o B LU R

MIFEE

loc_B65870BY ;o "(Ex)

ADRP X1, #=X@PAGE

ADRP X2, HaTzbps_es_set i@PAGE : "tzbps_es_set_ice_key: invalid reguest p

ADD X1, X1, #=zX@PAGEQOFF : "[%x]

ADD X2, X2, #alzbps_es_set_iEPAGEOFF : "tzbps_es_set_ice_key: invalid reguest
MOV WO, #3

BL sub_B&54EB0LC

MOV WO, HOxFFFFFFFO

Search again ...

LOAD:
LOAD:
LOAD:
LOAD:
LOAD:
LOAD:
LOAD:
LOAD:
LOAD:
LOAD:

00000000865EEDED
00000000865EEDES
00000000865EEDET
00000000865EEDEE
00000000865EEDESD
00000000865EEDGA
00000000865EEDER
00000000865EEDEC
00000000865EEDED
00000000865EEDGE

DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB

OxFO
Ox6F
Ox58
OxB8é

Table found!

LOAD: 00000000865EEDGS DCB 0
LOAD: 00000000865EEDET DCB 0
LOAD:00000000865EEDGES DCQ sub_B865B6FF0
LOAD: 00000000865EEDTO DCB 0
LOAD: 00000000865EEDTL DCB 0
LOAD: 00000000865EEDT2 DCB 0
LOAD: 00000000865EEDT 3 DCB 0
LOAD: 00000000865EEDTY DCB 3
LOAD: 00000000865EEDTS DCB 0x10
LOAD: 00000000865EEDT S DCB 0
LOAD: 00000000865EEDTT DCB 2
LOAD: 00000000865EEDT S DCB 1
LOAD: 00000000865EEDTS DCB 0
LOAD: 00000000865EEDTA DCB 0
LOAD: 00000000865EEDTB DCB 0
LOAD: 00000000865EEDTC DCB 0
LOAD: 00000000865EEDTD DCB 0
LOAD: 00000000865EEDTE DCB 0
LOAD: 00000000865EEDTF DCB 0
LOAD: 00000000865EEDBO DCQ sub_B86587120
LOAD: 00000000865EEDBS DCB 0

e There are no more pointer to strings

e Detection of table can be easily automated with IDAPython

Next (1/2)

e | have now full access to TZ and a framework that allow me to
patch the TZ image to execute any experiment

e No need for NDA, dev boards, emulation. Freedom to learn!

e No TrustZone debugger! We are blind now.
o |dea: implement a debugging interface by patching TZ

Next (2/2)

e We need to find other devices that allow us to write on the TZ
partition or find more methods to access TZ
o Don't blame me if you brick your phone!

o I'm trying to unlock other devices. Will post any new
information on my Twitter account.

e Have fun with TZ!
o but no rootkits, please!

o Rootkits are lame)

Thank you!

Greetz!

e Sheng Di @sheng0x64
e TrustZone Jedi Hacker Master Gal Beniamini @laginimaineb

e Jonathan Levin @Morpheus

https://twitter.com/sheng0x64
https://twitter.com/laginimaineb
https://twitter.com/Morpheus______

References 1/2

Best references about TrustZone hacking/internals:

1. http://bits-please.blogspot.sg/
2. http://technologeeks.com/files/TZ.pdf
3. http://technologeeks.com/files/TrustZone.pdf

http://bits-please.blogspot.sg/
http://technologeeks.com/files/TZ.pdf
http://technologeeks.com/files/TrustZone.pdf

Reference 2/2

1. http://blog.csdn.net/u011279649/article/details/45250979

2. http://huagianlee.github.io/2015/08/23/Android/ = i# Android
W% B R AL 4 i - power-on | HL $|Home-Lanucher i 51/

3. http://forum.xda-developers.com/showthread.php?
t=1769411&page=24

4. http://www8.hp.com/h20195/v2/getpdf.aspx/4AA5-
6428ENW.pdf?ver=1.0

5. https://www.arm.com/files/pdf/Tech_seminar_TrustZone_v7_PU
BLIC.pdf

6. https://android.googlesource.com/platform/prebuilts/gcc/linux
-x86/arm/arm-eabi-4.6/

7. https://www.isc2cares.org/uploadedFiles/wwwisc2caresorg/Co
ntent/Android-Security-Report-FrostSullivan.pdf

http://blog.csdn.net/u011279649/article/details/45250979
http://huaqianlee.github.io/2015/08/23/Android/%E9%AB%98%E9%80%9AAndroid%E8%AE%BE%E5%A4%87%E5%90%AF%E5%8A%A8%E6%B5%81%E7%A8%8B%E5%88%86%E6%9E%90-%E4%BB%8Epower-on%E4%B8%8A%E7%94%B5%E5%88%B0Home-Lanucher%E5%90%AF%E5%8A%A8/
http://forum.xda-developers.com/showthread.php?t=1769411&page=24
http://www8.hp.com/h20195/v2/getpdf.aspx/4AA5-6428ENW.pdf?ver=1.0
https://www.arm.com/files/pdf/Tech_seminar_TrustZone_v7_PUBLIC.pdf
https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/arm-eabi-4.6/
https://www.isc2cares.org/uploadedFiles/wwwisc2caresorg/Content/Android-Security-Report-FrostSullivan.pdf

