
Escalating privileges on
OS X

IOKit edition

and iOS

Ian Beer

Who am I?

● Vulnerability Researcher with Google Project
Zero

● Enjoy browser bugs and sandboxing
○ Chrome
○ Safari
○ Firefox
○ Flash
○ OS X
○ iOS

Overview

● What/Why IOKit?
● How IOKit works
● Bugs

What is IOKit?

● Premier source of Apple kernel bugs
● OS X/iOS kernel driver framework
● Written in C++

○ a subset of C++ with some extra bits
● Sort-of open-source

○ opensource.apple.com is your unreliable friend
● /System/Library/Extensions/*.kext

http://opensource.apple.com
http://opensource.apple.com

What does IOKit provide?

● Base classes for many driver families
○ Some open-source families (eg IOHIDFamily)
○ Some closed-source families (eg IOAccelerator)

● libkern custom C++ standard library
○ OSArray, OSString, OSSet, OSDictionary…

● OSUnserializeXML
○ Kernel XML parser
○ Compatibility layer between userspace

CoreFoundation + kernel libkern types

Talking to OS X Kernel Services

● BSD kernel interface via syscall
● Mach “micro-”kernel interface via syscall
● Mach kernel services via mach_msg trap
osfmk/*/*.defs files define mach kernel
service interfaces
uses build-time interface code generation via
MIG tool

Example MIG interface definition

routine
io_service_get_matching_service(

 master_port : mach_port_t;

in matching : io_string_t;

out service : io_object_t

);

Talking to Mach Services:

MIG generated
serialization code

mach_msg TRAP

ipc_kobject_server

userspace kernelspace

MIG generated
deserialization code

IOKit fundamentals

Anatomy of an IOKit driver

IOService IOUserClient

Subclass to provide
driver functionality

Subclass to provide
userspace interface

IOKit/Userspace
Communication

IOKit userspace interfaces

● External Methods
○ Numbered methods with controlled arguments

● Shared Memory
○ Typically map a kernel heap allocation into userspace

● Registry Properties
○ read and write <Key:Value> pairs

External Methods

IOConnectCallMethod

● Userspace iokit wrapper function around
io_connect_method MIG service routine
● Allows passing of unstructured data to

IOUserClient External Methods
● Look for IOUserClients overriding:

○ ::externalMethod
○ ::getTargetAndMethodForIndex
○ ::getExternalMethodForIndex

IOKit C++ reflection

● OSMetaClass
○ provides runtime dynamic cast

● OSMetaClass::allocClassWithName
○ allows instantiation an IOKit object by name

● API too tempting!

Surely that’s not exposed
to untrusted input?

well….

IOSurface

● Wrapper around a shared memory buffer for
graphics

● IOSurfaceRootUserClient reachable in
most interesting sandboxes:
○ mobilesafari on iOS
○ chrome renderer on OS X

● Target of jailbreakme 2.0

create_surface example:

Interface is XML based:
<dict>

 <key>IOSurfaceBytesPerElement</key>

 <integer size="32">0x4</integer>

 <key>IOSurfaceWidth</key>

 <integer size="32">0x40</integer>

...

</dict>

create_surface extra key:
We can actually specify an extra key and value:

<key>IOSurfaceClass</key>

<string>IOAnythingWeWant</string>

The code defaults to using IOSurface as the IOSurfaceClass,
but if we specify one, then it will use the reflection API to
allocate it for us.

Issues:
Type checking is done after allocating the new object using
OSMetaClass::safeMetaCast

which is okay, except:
The object pointer has already been cast to an IOSurface*

which is okay, except:
If the inheritance check fails, the code calls an IOSurface
method to destroy it…

which isn’t okay! Let’s look in more detail

What that actually looks like in code:
; r12 is return value from allocClassWithName

mov rax, [r12]

mov rdi, r12

call qword ptr [rax+120h] ; ← bug is here

This is a bug because +120h is outside the range of the vtable
of the base class of all IOKit objects, OSObject

What that means:
We can reliably call the function at offset 120h in ANY IOKit
object vtable

We don’t really control the arguments, but we know sort-of
what they’ll look like

Super-simple to exploit on OS X for a priv-esc
iOS left as an exercise for the reader

Shared Memory

IOConnectMapMemory

● Userspace iokit wrapper function around
io_connect_map_memory MIG method

● Asks the UserClient for shared memory
● Look for IOUserClients overriding:

○ ::clientMemoryForType

● Pretty much every UserClient which
implemented this got it wrong...

IODataQueue

● Utility class to allow arbitrary data objects to
be queued by the kernel in shared memory
then dequeued by userspace (or the other
way round)

● Used by many IOUserClients:
○ AppleUSBMultitouchUserClient
○ IOHIDPointingDevice
○ IOBluetoothHCIPacketLogUserClient

IODataQueueMemory

This structure is at the start of the shared
memory buffer:
typedef struct _IODataQueueMemory {

 UInt32 queueSize;

 volatile UInt32 head;

 volatile UInt32 tail;

 IODataQueueEntry queue[1];

} IODataQueueMemory;

Trusting data in shared memory

Every value was trusted by the kernel:
 UInt32 queueSize;

 volatile UInt32 head;

 volatile UInt32 tail;

 IODataQueueEntry queue[1];

 ← passed to kmem_free

←used to compute
 index into queue to
 enqueue next entry

IOKit Registry Properties

IORegistryEntrySetCFProperty

● Userspace iokit.framework wrapper around
io_registry_entry_set_properties

● Another XML-based API
● generally forbidden in most sandboxes
● look for ::setProperties overrides

IOHIDKeyboard
$ ioreg -l -k IOHIDKeyboard

IOHIDKeyboard <class IOHIDKeyboard, id 0x1000002cc, registered,
matched, active, busy 0 (0 ms), retain 9>

{

 "HIDVirtualDevice" = No

 "Transport" = "USB"

 "HIDKeyboardRightModifierSupport" = Yes

 "HIDKeyboardKeysDefined" = Yes

...

 "HIDKeyMapping" = <00000b01013802013b03013a040...

Curious binary
data blob, is it
configurable?

IOHIDFamily - Open-Source!
Grep for HIDKeyMapping:
if((data = OSDynamicCast(OSData,

 dict->getObject(kIOHIDKeyMappingKey))))

 {

 map = (unsigned char *)IOMalloc(data->getLength());

 bcopy(data->getBytesNoCopy(), map, data->getLength());

 _keyMap = IOHIKeyboardMapper::keyboardMapper(this, map, data-
>getLength(), true);

::parseKeyMapping
/* Copyright (c) 1992 NeXT Computer, Inc. All rights reserved.

 *

 * KeyMap.m - Generic keymap string parser and keycode translator.

 *

 * HISTORY

 * 19 June 1992 Mike Paquette at NeXT

 * Created.

 * 5 Aug 1993 Erik Kay at NeXT

 * minor API cleanup

 * 11 Nov 1993 Erik Kay at NeXT

 * fix to allow prevent long sequences from overflowing the event queue

 * 12 Nov 1998 Dan Markarian at Apple

 * major cleanup of public API's; converted to C++

::parseKeyMapping - old-skool c:
// read a short from the input buffer

parsedMapping->numSeqs = NextNum(&nmd);

// check a lower-bound - no upper-bounds check

if (parsedMapping->numSeqs <= maxSeqNum)

 return false;

// use as a loop counter to write to seqDefs (a char*[128])

for(i = 0; i < parsedMapping->numSeqs; i++) {

 parsedMapping->seqDefs[i] = (unsigned char *)nmd.bp;

 ...

Conclusions

It’s about knowing where to look

● This was just the tip of the iceberg
● None of these bugs were complicated
● Some have been there, trivially exploitable,

for the entire lifetime of OS X and iOS
● Not enough people look at OS X security in

the public

https://code.google.com/p/google-security-research/

Any Questions?

https://code.google.com/p/google-security-research/
https://code.google.com/p/google-security-research/

