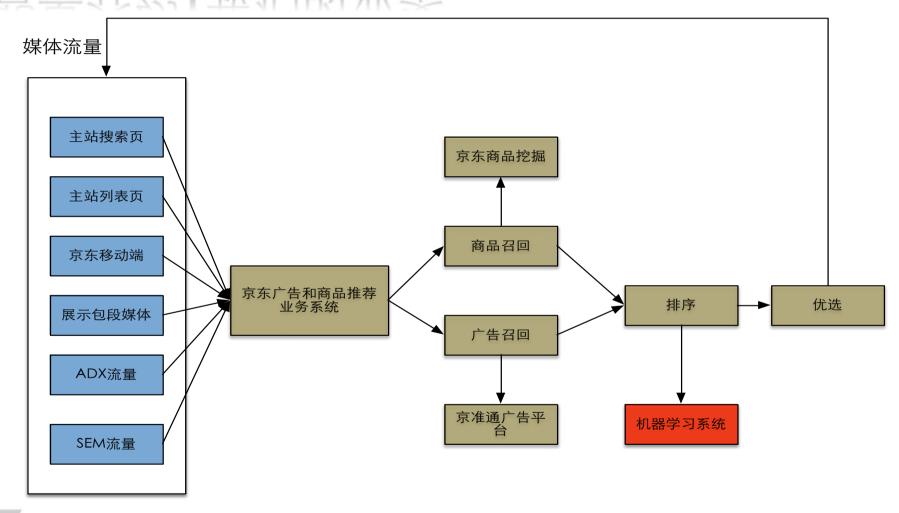


包勇军 京东

京东广告和推荐的机器学习系统实践

- * 背景介绍
- * 浅层模型时代
- * 深度学习时代

背景介绍|我们的业务



背景介绍|问题

- * 主要解决的问题
 - +机器学习在排序算法中的应用
 - +特点:
 - ×实时,在线
 - ×广告,推荐的混合系统

- * 背景介绍
- * 浅层模型时代
- * 深度学习时代

浅层模型时代I机器学习系统核心问题

- *模型算法
- * 日志流
- *训练系统
- * 特征系统
- * 评估系统

浅层模型时代|模型算法

- * 浅层模型算法:
 - +大规模稀疏性特征建模, Ir
 - +核心优化方向:特征
 - ×手工特征工程
 - ×特征组合算法:
 - * Fm/ffm
 - ⋆ gbdt+lr

浅层模型时代|模型算法

× Fm/ffm

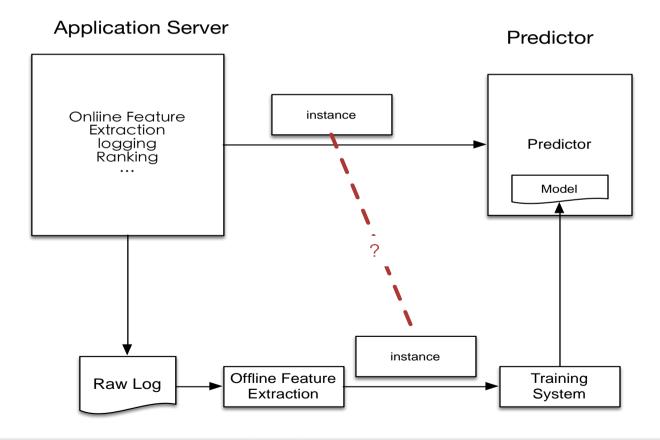
- +通过因式分解,减少数据稀疏性,有效学习特征 组合
- + 参数规模: n^2降为k*n(k<<n, k为factor大小, n特 征数目)
- +问题: 全组合的话,模型size = n*k,收益和资源 的取舍

浅层模型时代|特征系统

- *特征系统主要问题:
 - +线上线下特征一致性
 - +根据经验,线上线下特征一致性的架构,在业务 指标上能带来数量级的提升

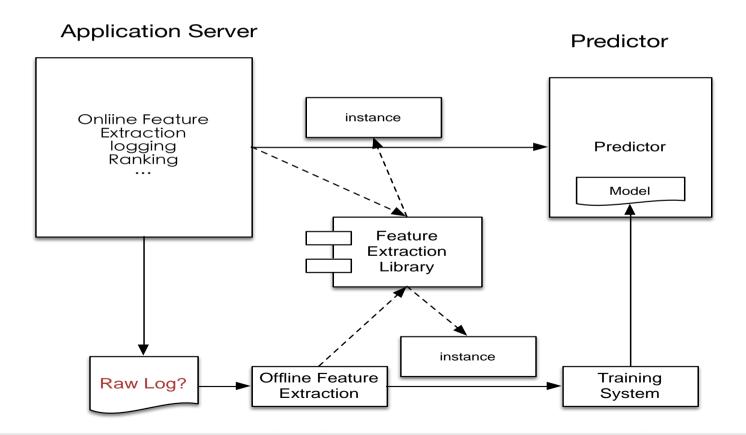
浅层模型时代|特征系统架构演化

*第一版,开始引入机器学习模块,问题产生



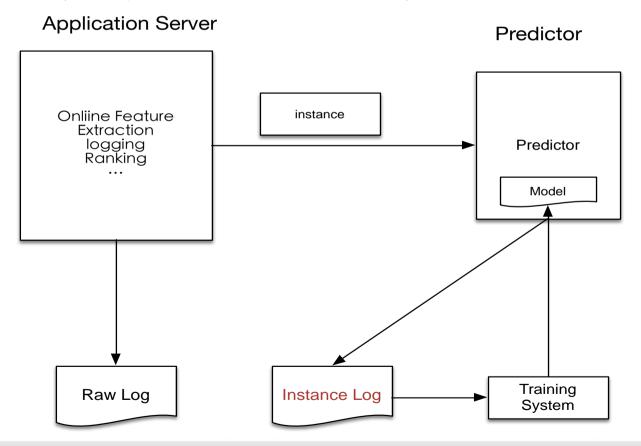
浅层模型时代|特征系统架构

*第二版,解决代码不一致,代码复用



浅层模型时代|特征系统架构

*第三版,解决数据不一致,彻底保证正确性



浅层模型时代|特征系统

- + 特征系统架构演变小结
 - × 特征=数据源+抽取算法
 - ×第一版是自然的选择
 - ★ 机器学习系统是优化阶段的工作、先有日志后有机器学习
 - ×第二版是策略效率为先的选择
 - * 策略人员驱动后续的技术升级,离线代码驱动,先有离线代码后有在 线代码
 - * 日志量Double引发的资源担忧
 - * 特征优化可以回朔历史数据,周期短
 - ×第三版是保证策略收益的选择
 - * 在线系统驱动特征升级, 牺牲开发效率, 保证正确性

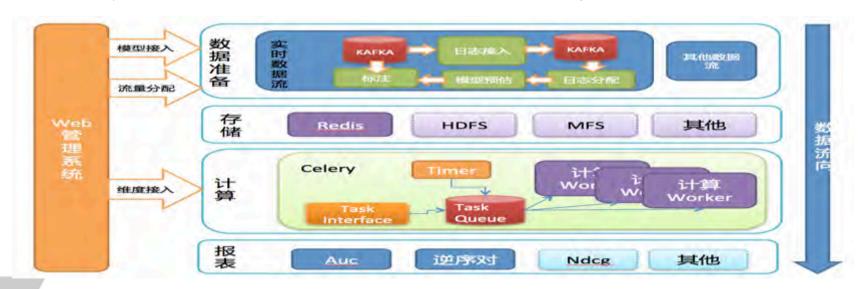
浅层模型时代模型效果评估

- *评估指标
 - + AUC
 - + Inverse Ratio
- *评估系统的主要问题:
 - +各种乌龙、结论不可信
 - + 旧方案: 离线工具评估离线指标
 - +新方案: 在线系统评估离线指标

浅层模型时代模型效果评估

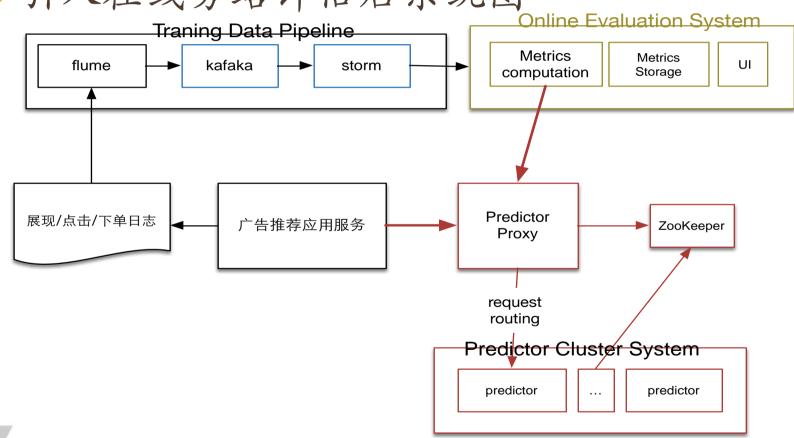
* 在线旁路评估系统

- * 将在线predictor作为离线评估的inference工具
- * 将在线日志流作为离线评估数据
- × 离线测试模型接入在线predictor集群



浅层模型时代|旁路评估架构图

* 引入在线旁路评估后系统图



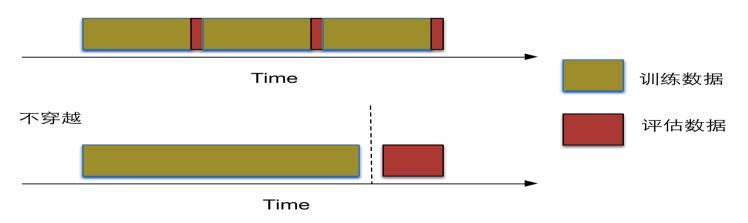
浅层模型时代|在线旁路评估

- * 收益
 - +数据可比,可信
 - ×工具到服务平台的升级
 - ×避免数据diff和工具bug的干扰
 - ×彻底解决在线实时服务模型中的评估穿越问题

浅层模型时代|模型效果评估

- * 在线实时服务模型中的评估穿越问题
 - + Unseen data, 历史数据预估新数据
 - +数据分布变化更快,泛化性要求更高
 - ×推荐中的新兴趣点
 - ×广告中的新广告

穿越



浅层模型时代|训练系统

- * 浅层模型训练系统的核心问题: 大数据的效率问题
 - + Sampling
 - + Distributed training, libfm on vowpal wabbit
 - + Incremental
 - + Online learning:
 - × Assumption: stationary -> concept drift
 - × 好处:
 - * state track, 时效性
 - × 问题:
 - * 系统复杂, 需要增加实时计算系统
 - * 更新频繁、增加了系统耦合
 - * 特征和算法升级麻烦

浅层模型时代|多目标优化

- * 业务目标:广告收入 (year 2014)
 - + eCpm = pCtr * bid
 - +pCtr: 通过机器学习进行点击率预估

浅层模型时代多目标优化

- * 多目标优化
 - + 广告收入+GMV (year 2015)
 - + RankingFunction=pCtr1*(a*pValue+b*pGmv)
 - + 三个模型: pCtr, pGmv, pValue
- * 多模型方案的问题
 - +分目标优化、策略升级不能同步
 - +点击后模型Gmv的训练数据稀疏

浅层模型时代|多目标优化方案

- * 多目标优化
 - + One model 方案
 - ×收入+Gmv一起建模,策略同步,数据更丰富
 - × Pairwise + Pointwise
 - * Combine regression and rank

$$\min_{\mathbf{w} \in \mathbb{R}^m} \alpha L(\mathbf{w}, D) + (1 - \alpha)L(\mathbf{w}, P) + \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

- ★ L(w, D) regression loss, L(w, P) pairwise rank loss
- * Rank loss保证不同label的序关系,在rare events场景,能提升 regression的效果
- * Regression loss拟合绝对值,保持分布稳定,用于广告的二价计 费

- * 背景介绍
- * 浅层模型时代
- * 深度学习时代

深度学习时代

- *为什么引入深度学习?
 - + 非线性模型
 - ×LR是通过各种特征组合来实现
 - *人工特征组合,高维线性模型建模非线性
 - * Libfm, depth 2
 - ★ GBDT+LR, depth 3
 - *大数据背景下, DNN更通用
 - +优化方式算法驱动
 - × Manual feature engineering->Feature Learning
 - * 浅层模型: Raw data->hand craft->feature;
 - * 深度学习: Raw data->algorithm->feature;

深度学习时代|面临的问题

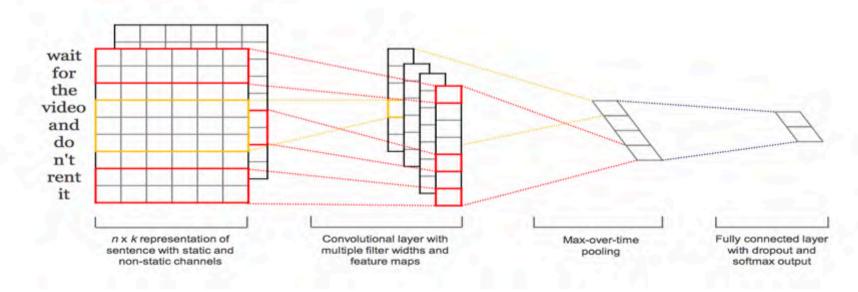
- * 引入深度学习面临的问题
 - + 现有算法系统以及效果如何平滑过渡
 - + 离散特征如何建模
 - ×billion级别,海量,稀疏

深度学习时代」建模选型

- *稀疏离散特征的DNN建模方法:
 - + 离散特征数值化: 把特征离散值映射到连续型的 数值空间
 - × Embedding法
 - *每一个样本都是几亿维
 - ×稀疏样本转稠密向量表示
 - +CNN方法:文本转图像

深度学习时代|建模选型

- * CNN法 | 样本文本当成图像
 - × 1-of-n encoding
 - × Input embedding



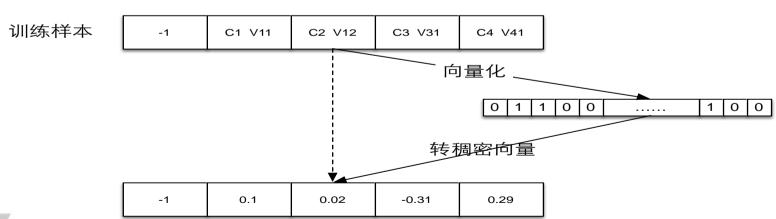
深度学习时代|建模选型

× CNN法

- +效果: AUC 有明显提升
- + 问题:
 - ×10倍的在线预估cost,在线架构的大量优化工作
 - ×消耗资源大,性价比低

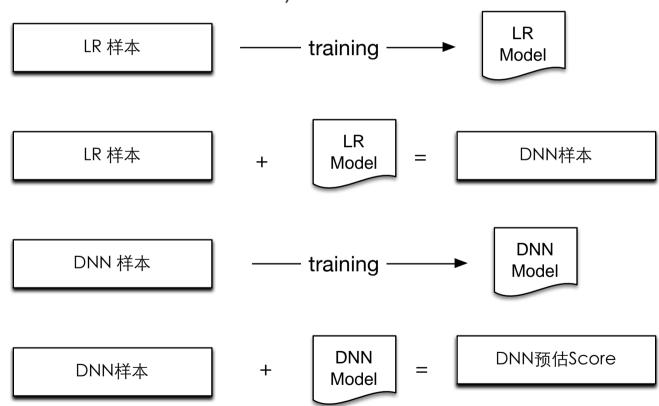
深度学习时代样本表示

- *稀疏样本转稠密表示
 - +每一个特征类是输入的一维
 - +离散特征值映射到连续值
 - ×后验点击率
 - × LR weight



深度学习时代系统方案

* LR model->DNN法, LR to Dnn

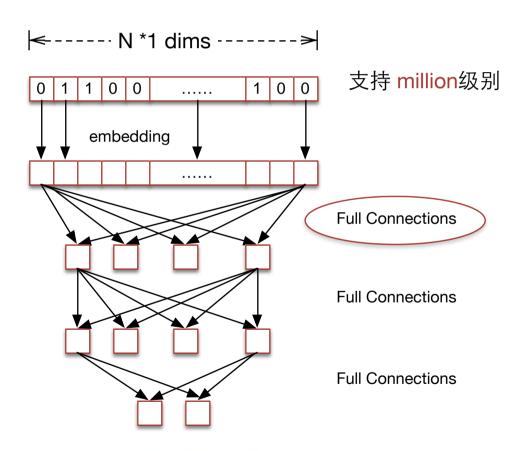


深度学习时代方案总结

- × LR to DNN方法小结
 - + 效果: 对比libfm模型, AUC +2%
 - + 问题:
 - ×LR权重不稳定, DNN层效果波动
 - ×系统复杂, 增加特征周期长, 升级困难

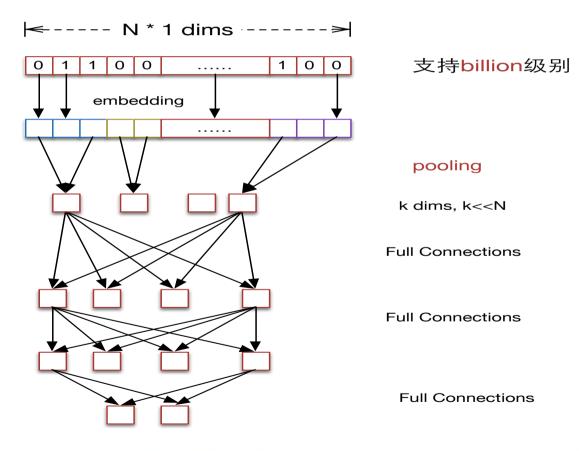
深度学习时代方案升级

DenseDNN with LR embedding, 合并LR和DNN到一个网络



深度学习时代方案升级

× SparseDNN with LR embedding, pooling思想降低参数规模



深度学习时代|升级后效果

- SparseDNN with LR embedding方法,效果:
 - + 对比Lr to Dnn, AUC累计提升2%-3%
 - + 无权重波动,系统稳定;
 - + Training together, 无各种穿越问题;
 - + One model统一结构,系统简单,更易继续优化扩展
 - ×离散特征, LR embedding 接入
 - ×连续特征、图像CNN embedding、行为RNN embedding 接入

深度学习时代|DNN训练系统

- * 现有开源框架问题
 - +10亿特征,150亿的样本
 - +现有开源框架的问题
 - × Theano, Caffe, mxnet, Petuum, DMTK, Tensorflow
 - × 多机支持, GPU不能解决IO负载大的问题
 - × AllReduce方案,模型全量同步,通信开销大
 - ×稀疏性的支持, 大规模稀疏矩阵运算

深度学习时代IDNN训练系统

- * 基于开源自研的分布式训练系统
 - + Theano + Parameter Server 架构
 - * 尽量复用现有开源框架
 - × 深度定制Theano, 以支持大规模稀疏矩阵运算
 - × Parameter Server作为参数交换的机制
 - × Downpour SGD 实现
- * 系统性能
 - +10亿稀疏特征+5层神经网络,150亿样本,4小时 训练

