
cloudera[®]

hadoop架构在云上的应用实践

提纲

- Cloudera公司及业务简介
- Cloudera EDH 介绍
- · Hadoop架构在云上的应用实践

Cloudera

创立 成立于2008,企业级Hadoop产品提供商

ORACLE YAHOO! facebook. Google

员工数量 超过1100名

全球支持 24x7 全球支持

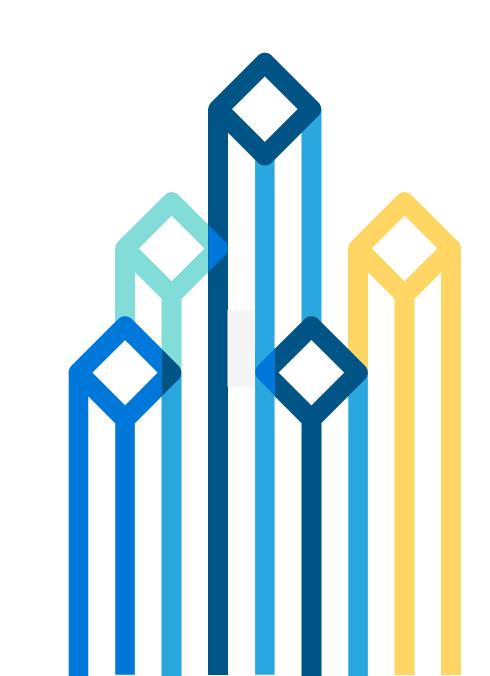
创新的主动支持和预测支持项目

客户群 700+全行业客户(金融、电信、零售、能源、互联网、媒体等)

各行业的顶尖企业都有Cloudera Enterprise部署

强大的产业链 数百个生态链合作伙伴; Cloudera Connect Program (CCP)

培训和认证 超过80,000管理员、开发者等受训;最有价值的大数据证书


开源领导者 Hadoop及其相关生态项目最大贡献者,和Intel合作加速

企业数据中心的革新

Cloudera中国 2014年9月成立,上海是大中华区总部,负责产品培训、专业技术服务和产品支持,在北京和广州有本地支持

cloudera[®]

Cloudera EDH 介绍

Cloudera和Apache开源社区

Leaders Across the Hadoop Ecosystem

Doug Cutting: Hadoop创始人,Apache基金会主席

22 项目由Cloudera员工创建

100 Committer 席位覆盖Hadoop生态圈

数十万 生产环境部署节点,覆盖全行业

15 Hadoop相关的原理及架构类书籍

Cloudera Enterprise

Process

Ingest Sqoop, Flume, Kafka

Transform MapReduce, Hive, Pig, Spark

Discover

Analytic Database Impala

Search Solr

Model

Machine Learning R, Spark Mllib, Mahout

Serve

NoSQL Database HBase

Streaming
Spark Streaming

System and Data Management

YARN, Cloudera Manager Cloudera Navigator

Unlimited Storage HDFS, HBase

Deployment Flexibility

On-Premises Appliances Engineered Systems

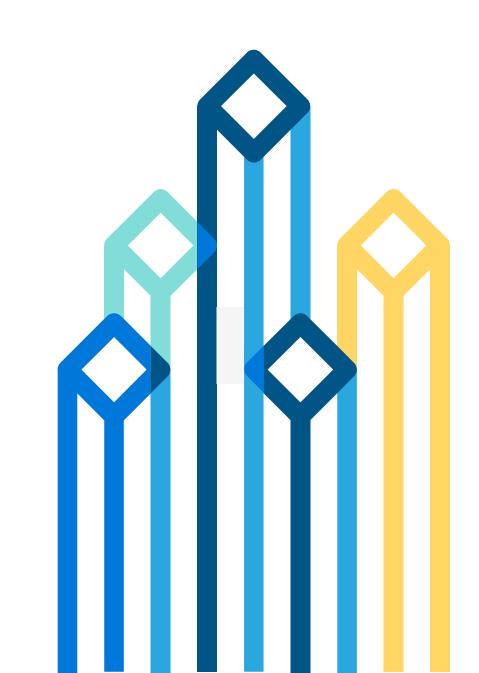
Public Cloud Private Cloud Hybrid Cloud

完善的企业安全策略

- 身份认证,授权,审计,数据安全
- 数据可管理性

开放标准

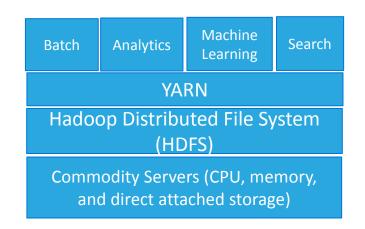
- 100%开源Hadoop及其相关 组件
- · 3rd标准的软件集成
- 开放API
- 标准云服务集成

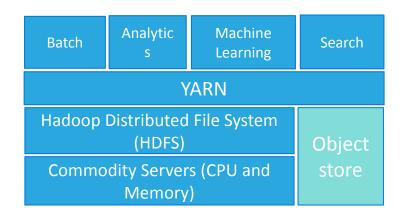

统一平台

- 数据导入导出
- 可扩展存储
- 多样化的处理引擎
- 安全
- 资源管理
- 元数据管理

cloudera[®]

Hadoop架构在云上的应用实践


Hadoop 栈: 本地 versus 云


本地模式

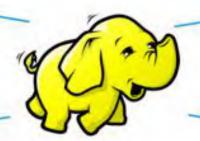
- 直连存储
- 数据不在集群间共享
- 固定大小的集群
- 对所有用户共享一个集群

云模式

- 存储不一定是在本地
- •可在多个集群间共享数据
- •基于负载弹性伸缩
- 集群按照使用者的需要进行创建

新的Hadoop 部署生态

- 公有云
 - Amazon AWS
 - Microsoft Azure
 - Google Cloud
 - Aliyun
 - Amazon EMR
- 传统的中央存储
 - EMC DSSD, EMC Isilon
 - HGST Active Archive System



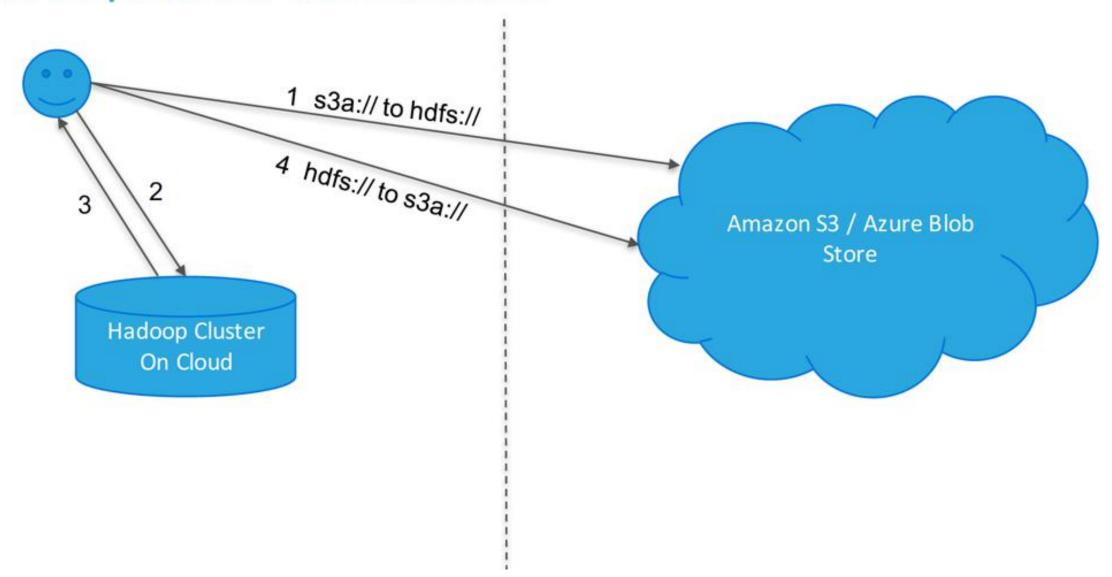
cloudera IMPALA

新型部署的特点

- HDFS将Block管理外包给第三方服务
 - •理论上可以支持无限的文件
 - 小文件/大量读写的问题都得以解决
- · HDFS 提供大数据应用统一的访问层
 - HDFS FileSystemInterface
- 后端存储服务通常有一致的访问时间
 - · 云存储(Amazon S3, Aliyun OSS)
 - 失去了局部性
 - 没有访问速度区别

HDFS on Cloud

- 趋势: 数据已经在云上
- 为公有云优化
 - •在云上搭建HDFS可以为HDFS带来
 - 弹性伸缩性
 - HDFS 可以为Cloud带来
 - •丰富的大数据生态系统
 - 强一致性
 - 成熟的数据监管


三种主要公有云部署形式,之一

- · 直接在虚拟机/云上部署Hadoop集群
 - · 与直接在物理机器上部署Hadoop模式几乎完全一致
 - ·每个DataNode都建议挂载永久存储设备(i.e. AWS EBS)
 - •需要注意的是:
 - 通常HA NameNode, QJM, ZooKeeper等需要保证部署在不同物理机器上或者Availability Zone里
 - ·保证真正意义的HA
 - 优点: 传统的安装经验可以直接使用
 - •缺点:人为干预高,难于做性能诊断

云部署之二

- · Hadoop 作为运算集群
- 数据存储在第三方对象存储服务商
 - 通过HDFS cloud connector 来访问云存储中数据
 - AmazonS3 / MicrosoftAzure / Google CloudStorage connectors
 - · HDFS 作为缓存区和工作区
- ·优点: 较少的维护HDFS 集群的烦恼
- 缺点:
 - •每次做数据分析都需要导入导出数据
 - 违背了Hadoop的" Move Computation to Data"的原则

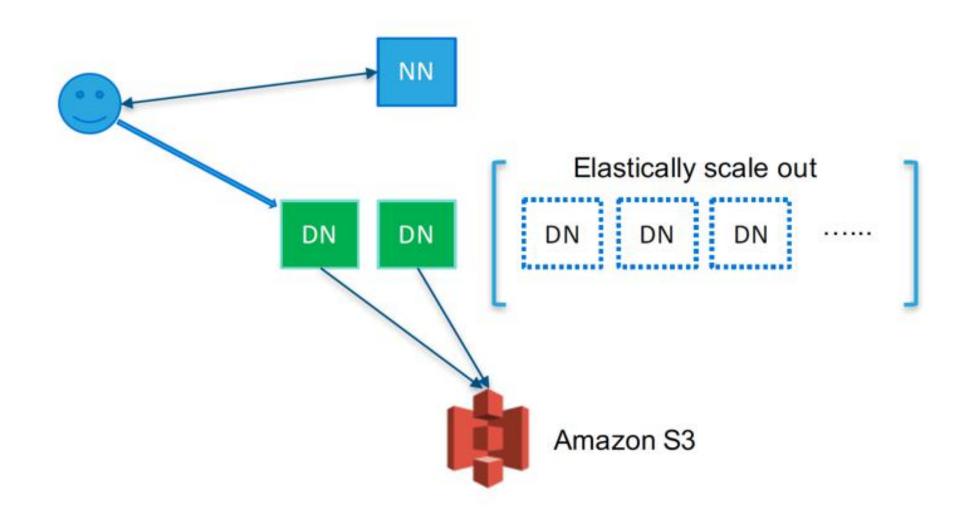
Hadoop Cloud Connectors

云部署之三

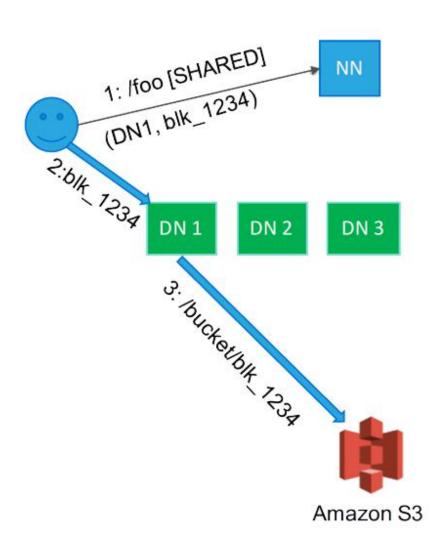
- · Hadoop直接操作后端Shared Storage
 - 多个解决方案正在积极开发中
 - Elastic HDFS on Amazon S3
 - Microsoft Azure Data Lake
 - EMC DSSD
 - ·利用后端shared storage可以被所有DataNode访问的特性
 - · 由DataNode充当代理来访问后端的存储
 - •对上层应用(Hbase, Hive, Impala等)透明

- · 传统HDFS的运营难处在于:
 - 难于简单的扩大缩小集群
 - ·由于固定的Block到DN的关系,变更集群大小需要大量的数据迁移工作 (Decommision/Rebalance)
 - 通常为了存储而非计算来设计集群的大小
 - 易造成低利用率

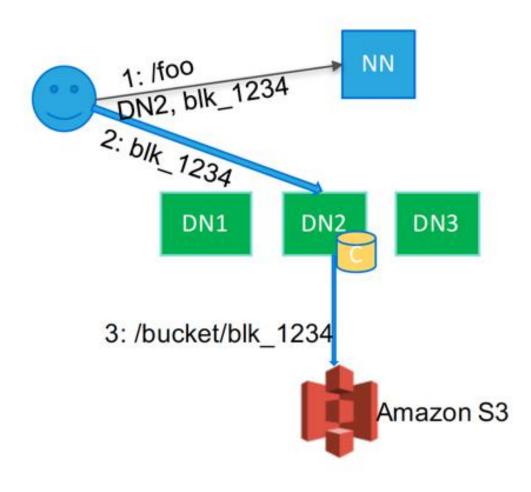
- •设计目标:
 - ·允许Hadoop上层应用直接访问S3
 - ·提供数据的强一致性(Strong Consistency) 访问
 - •一次性的运算集群(DisposableHadoopCluster)
 - ·集群规模可以弹性伸缩(Elastic Scale Out / In)


- 数据
 - · 永久数据保存在S3上,保证
 - 99.99999999 % 持久性(Durability)
 - 99.99 % 可用性(Availability)
 - · HDFS 无需用3 份副本
 - · HDFS DataNode 作为Proxy来访问数据,提供HDFS语义

- 元数据(Metadata)
 - NameNode无需保证Block 到DataNode的关联性
 - 无需BlockManager 和full block report
 - 有效的减少NameNodememory footprint, Garbage Collection,RPC throughput
 - · NameNode可将Client导向任意DataNode来访问S3 数据
 - ·在改变HadoopCluster大小后,不需要再平衡数据(Rebalance)



Elastic HDFS架构


Write Pipeline

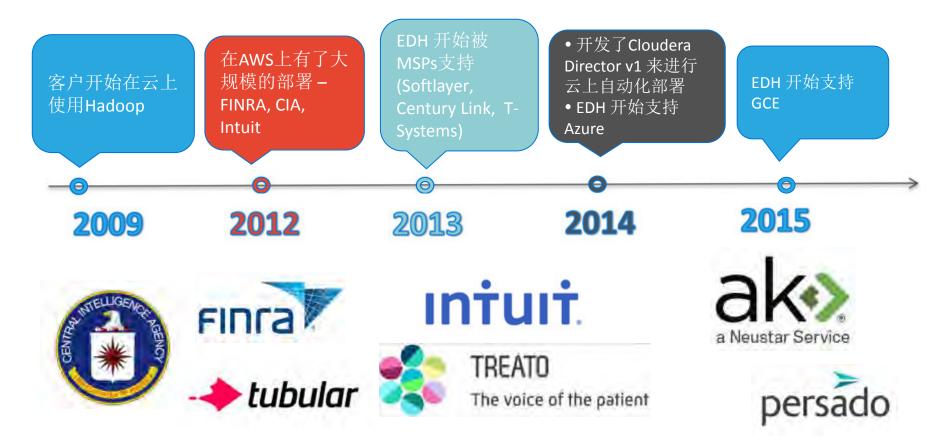
- 1. HDFS Client 向NN发出写请求,NN 随机返回一个DN
- 2. Client 将数据写入DN1
- 3. DN1将数据首先写入本地的临时 目录中
- 4. 在一个Block完成以后, DataNode 将数据推送到S3

Read Pipeline

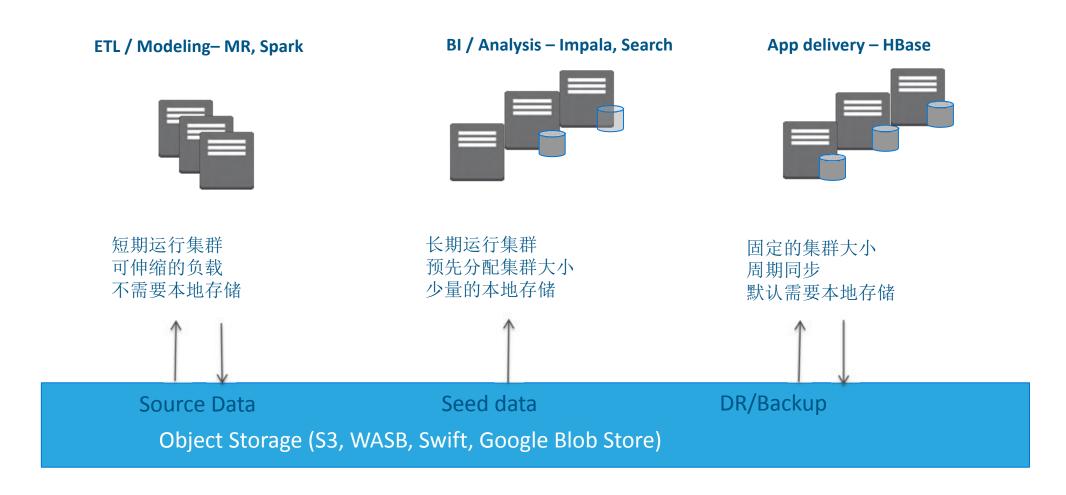
- 1. 用户向NameNode 询问文件(/foo)的位置
- 2. NameNode返回任意DataNode (DN2)
- 3. Client 访问DataNode (DN2)
- 4. DN2从S3中读取数据,缓存在本地,并返回给Client

其他应用透明访问S3的数据

- •写入数据时
 - ·应用直接通过Client-DataNode 协议
 - 无需知道后端存储的具体细节
- 读取数据时
 - · DataNode 缓存这份数据
 - · HDFS数据是不可更改(Immutable)
 - · 提供Client 数据访问局部性
 - ·方便任务调度和I/O优化(e.g., Impala)

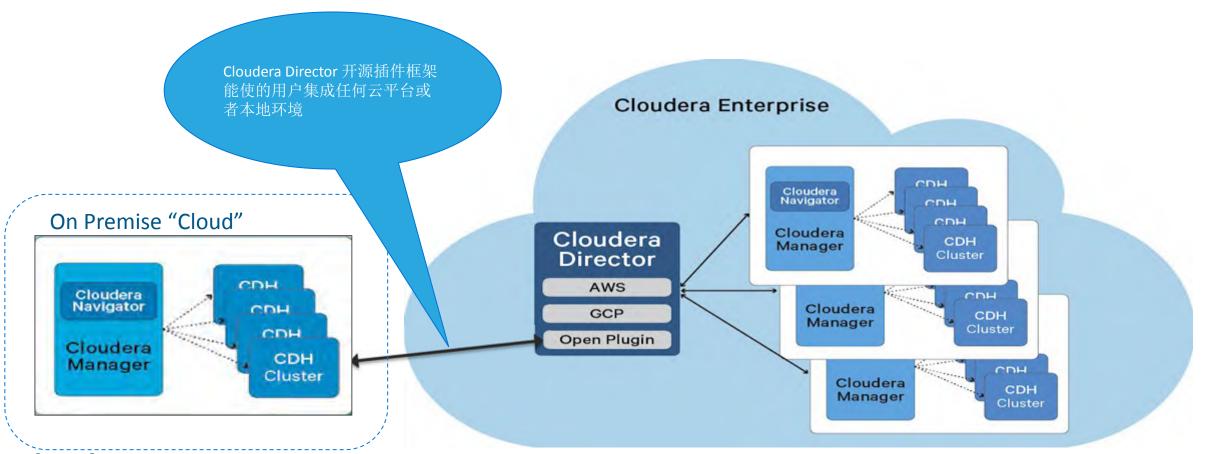

Elastic Scale Out / In

- · HDFS 集群的规模可以快速的扩张或者缩小
 - · NameNode具有详尽准确的DataNode信息
 - · 所有DataNode上的数据都是作为Staging和Cache data而存在的
 - · 新增的DataNode可以立即响应任意的读写请求
 - 关闭DataNode等效于清空Cache
- ·HDFS集群的大小取决于
 - •运算能力的需求
 - 而不是存储能力的需求



Cloudera云解决方案的时间线

CDH 是在目前主要的云供应商中最流行的Hadoop发行版


云上的架构模式

云部署方式

Cloudera Director 建立 Cloudera Manager 来监控一个或多个集群,无论是在本地还是在云端

Cloudera 特色

部署

部署简单;无后续配置 需求

支持快速启动: AWS Quickstart and GCE

支持弹性扩展计算和 存储能力

可管理性

可以管理多个平台环境 - 本地和云

一个仪表板来监控所 有部署好的集群

克隆集群

为已保存的工作负载 生成模板

可集成性

提供了开放的API以满 足二次开发包括简单 的脚本和自动化调度 的需求

为云提供商提供了开 放的 API 插件

企业级

深度安全集成: Kerberos & Sentry

Cloudera Navigator : Audit / Lineage / Workflow

高可用和弹性服务

Flexible Integration for controlled deployment in the cloud

唯一支持多平台的 Hadoop 发行版

Microsoft Azure

cloudera

cloudera

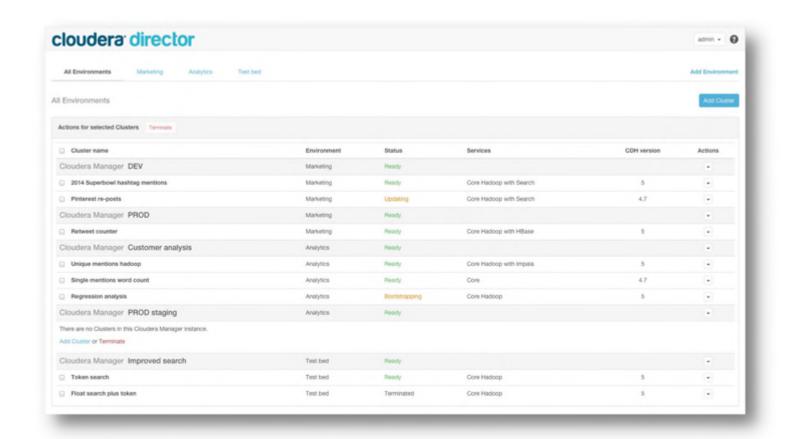
Cloudera: 把 EDH 带到云上

易迁移性: 支持多个平

Private Cloud

Public Cloud

灵活性: 计费灵活并且 支持灵活

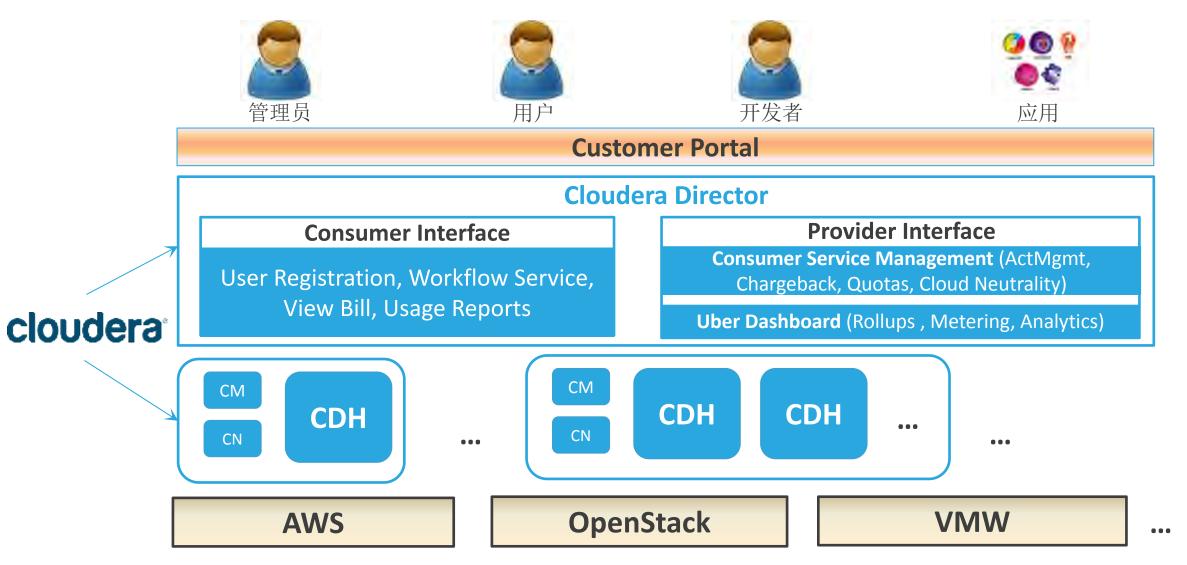

- 在云上支持传统的计费和支持方式
- 支持按照使用量计费

新选择: 正在增长的生 态环境

快速扩张的云服务商和生态系统来提供基于 云的服务

Scheduled for Roadmap

云上的Hadoop 不折中



Cloudera Director

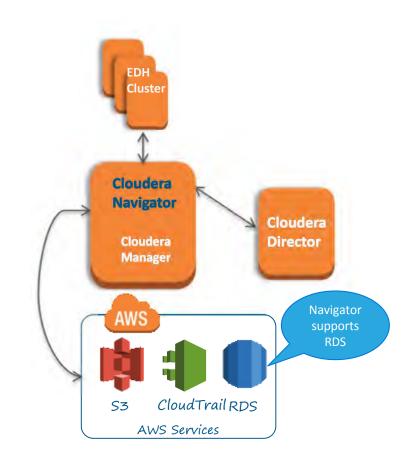
业界第一款跨平台的,自服务的解决方案,用来部署和管理 云上的企业级的hadoop.

- 免费下载,免费使用
- 支持企业级别的用户
- 自服务,统一管理
- · 支持混合云管理并首先支持了AWS

Cloudera Director: 自服务的hadoop

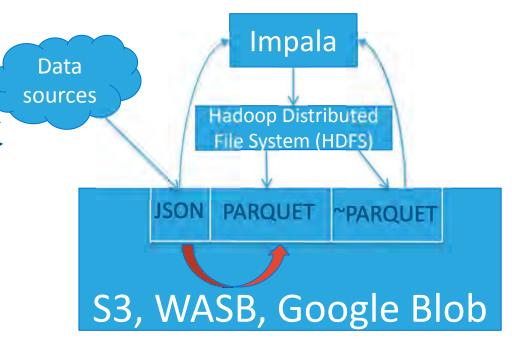
Cloudera Director的优势

提供给客户的优点	独特的能力	特性
简化集群生命周期管理	简单的 UI 来进行 建立,扩展 和拆除集群工作	自服务的建立和拆除集群针对高峰负载动态伸缩简化集群的clone为重复部署提供了云时代的蓝图
消除锁定	灵活开放的平台	100% 开源Hadoop 发行版为混合部署提供原生支持支持在同一个工作流中进行第三方软件的部署支持客户特定的负载部署
加速实现业务价值 企业就绪的安全和管理能力		支持复杂的集群架构在容量确定的情况下,最小化集群规模提供方便的管理工具安全和数据治理合规通过优化的云存储连接器来进行备份和灾难恢复
减少支持费用	监控和指标收集工具	支持多集群的 dashboard为计费提供跟踪信息


云上Navigator 的路线图

Navigator的核心能力:

- 审计
- 发现血缘关系
- 数据发现
- 元数据管理和生命周期管理


路线图项目

- 数据发现支持S3文件
- 与S3 notifications & Lambda相集成
- 与 CloudTrail 集成
- 审计 Director 的动作
- 存储Navigator 数据在 S3 上

Impala: 未来云中的数据库

- · JSON 数据将直接被加载到 S3中
- · 自动转换格式为 Parquet 以提高性能
- · HDFS作为一个修改和读取 S3中parquet数据的缓存
- · Impala将会从HDFS 和 S3中 读取数据

Cloudera的云合作伙伴

Amazon Web Services (AWS)				
Cloudera Director Integration	Yes			
Object Storage Integration	Yes			
Reference Architecture	Yes			
Full Platform Support	Yes			
Other Storage	Local Storage			

Google Cloud Platform (GCP)				
Cloudera Director Integration	Yes			
Object Storage Integration	TBD			
Reference Architecture	Yes			
Full Platform Support	Yes			
Other Storage	Local Storage			

Windows Azure					
Cloudera Director Integration	Planned				
Object Storage Integration	In Progress				
Reference Architecture	Yes				
Full Platform Support	Yes				
Other Storage	Premium VHD				

VMWare/OpenStack				
Cloudera Director Integration	Planned			
Object Storage Integration	NA			
Reference Architecture	Planned			
Full Platform Support	Planned			
Other Storage	Local Storage			

Why Cloudera?

云上的hadoop,不能有折中

最多特性的hadoop平台

- 为更低的TCO和更快实现业务价值准备的多个框架
- 持续的创新
- 最多的合作伙伴应用集成

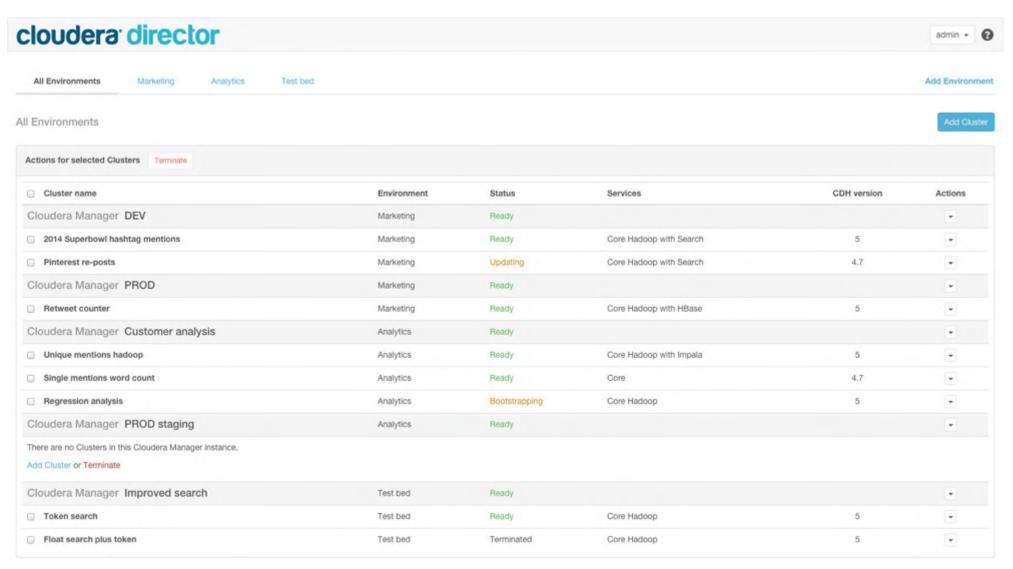
成功的企业级Hadoop平 台

- 安全和数据治理合规的平台
- 端到端管理
- 世界级的支持和hadoop经验

为云而建的hadoop平台

- · 独特的混合云管理软件
- 大量的优化的云合作伙伴生态系统
- 多个云提供商之间的跨平台性

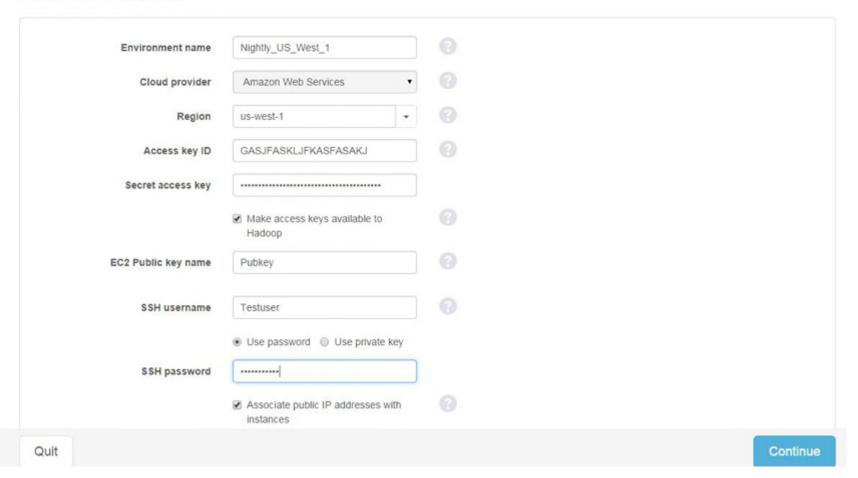
补充材料


Download Now – <u>www.cloudera.com/downloads</u>

Try It Out – <u>AWS Quickstart</u>

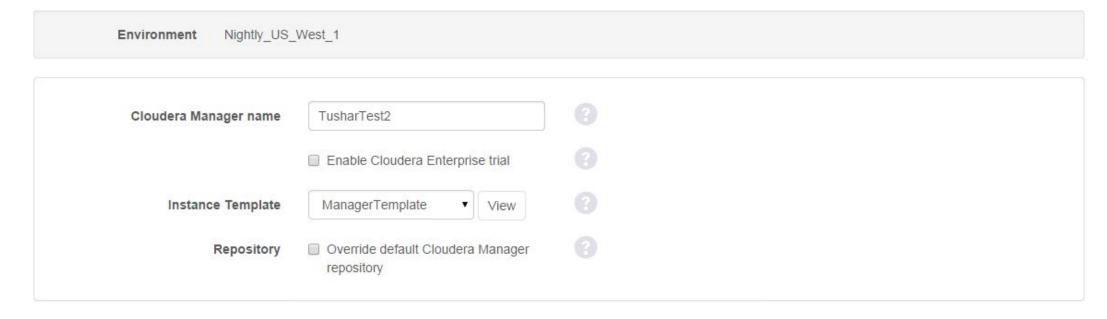
Learn More – www.cloudera.com/director

集群管理界面



申请云资源

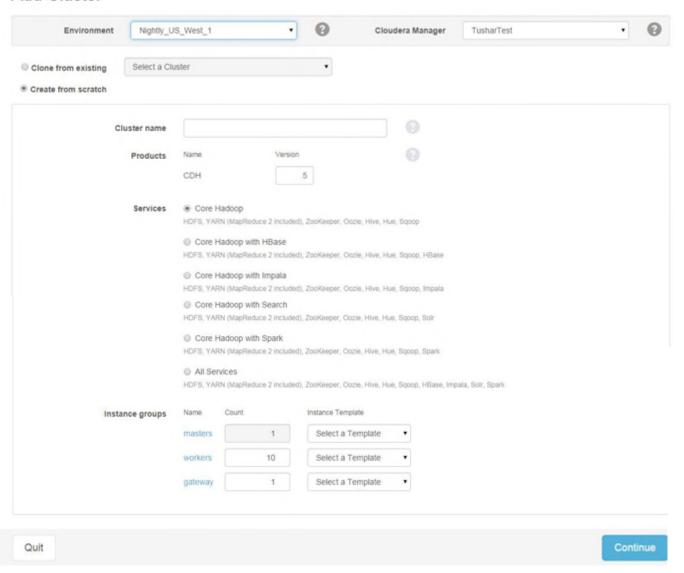
cloudera director


Add Environment

部署 Cloudera Manager

cloudera director

Add Cloudera Manager



增加集群

cloudera director

Add Cluster

扩展集群

cloudera director

Grow Cluster

Cluster name	Nightly_C	luster		
Products	Name	Vers	ion	
	CDH	4.7.	0	
Services	ZOOKEE	PER, HDFS, MAPRE	EDUCE, YARN, HBASE	
Instance groups	Name	Count	Instance Template	
	master1	1	master1	View
	master3	1	master3	View
	master2	1	master2	View
	workers	3	workers	View

命令行

```
1. java
vagrantijinode-D: - (bush)
tethys:cli asavu$
tethys:cli asavu$ vim sandbox.sample.conf
tethys:cli asavu$ ./bin/launchpad bootstrap sandbox.sample.conf
Installing Cloudera Manager ...
* Starting ... done

    Requesting an instance for Cloudera Manager ..... done

* Running custom bootstrap script on 192.168.33.10 ..... done
* Inspecting capabilities of 192.168.33.10 ...... done
* Normalizing 192.168.33.10 ...... done

    Installing ntp (1/2) .... done

* Installing curl (2/2) ..... done
* Rebooting 192.168.33.10 .... done
* Waiting for 192.168.33.10 to boot ...... done

    Installing repositories for Cloudera Manager ....... done

* Installing oracle-j2sdk1.6 (1/5) .... done
* Installing cloudera-manager-daemons (2/5) ..... done

    Installing cloudera-manager-server (3/5) .... done

    Installing cloudera-manager-server-db-2 (4/5) .... done

    Installing cloudera-manager-agent (5/5) .... done

* Starting embedded PostgreSQL database .... done
* Starting Cloudera Manager server .... done
* Waiting for Cloudera Manager server to start ..... done
* Configuring Cloudera Manager .... done
* Starting Cloudera Management Services .... done
* Inspecting capabilities of 192.168.33.10 ..... done
* Done ...
Cloudera Manager ready.
Creating cluster CDH4. Sandbox. Byon ...
* Starting ... done
* Requesting 3 instance(s) ..... done
* Running custom bootstrap script on new instance(s) ..... done

    Inspecting capabilities of new instance(s) ...... done

* Running basic normalization scripts ..... done
* Registering instance(s) with Cloudera Manager ... done

    Waiting for Cloudera Manager to deploy agents on instances ....
```


cloudera

Thank You