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Recent progress in AI
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Why now: very recent progress in AI



Mobileye



20 years ago: MIT and Daimler



STC Annual Meeting, 2016

Key recent advances  
in the engineering of intelligence   

have their roots  
in basic science of the brain

CBMM: motivations
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Desimone & Ungerleider 1989; vanEssen+Movshon

The same hierarchical architectures 
in the cortex, in models of vision 
and in Deep Learning networks
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The race for Intelligence

• The science of intelligence was at the roots 
of today’s engineering success 

• …we need to make another basic effort on it 
-  for the sake of basic science 
-  for the engineering of tomorrow



Third Annual NSF Site Visit, June 8 – 9, 2016

Mission:  We aim to make progress in understanding intelligence — 
that is in understanding how the brain makes the mind, how the brain 
works and how to build intelligent machines.  

CBMM’s main goal is to make progress in the 
science of intelligence which enables better 

engineering of intelligence. 
  

Science + Engineering 
of Intelligence
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CBMM 
Brains, Minds and Machines Summer School at Woods Hole:      

our flagship initiative

http://cbmm.mit.edu/summer-school/2016


Annual	
  STC	
  meeting,	
  2016

    In 2016: 302 applications  for 35 slots

Brains, Minds and Machines Summer School  
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Learning	
  by	
  Doing: 
Lab	
  Work	
  &	
  Joint	
  Student	
  Projects
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An example project across thrusts:  
face recognition 

Nancy Kanwisher
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Winrich Freiwald and Doris Tsao

A project across thrusts: face recognition 
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A project across thrusts: face recognition 
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A project across thrusts: face recognition 



When and why are deep networks better 
than shallow networks?


Another project 

Work with Hrushikeshl Mhaskar; 
initial parts with L. Rosasco and F. Anselmi
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Hierarchical feedforward models of the ventral stream 
 do “work”



Riesenhuber & Poggio 1999, 2000;  Serre Kouh Cadieu 
Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007

“Hubel-Wiesel” models 
include  

Hubel & Wiesel, 1959: 
Fukushima, 1980, Wallis & 
Rolls, 1997; Mel, 1997; 
LeCun et al 1998; 
Riesenhuber & Poggio, 
1999; Thorpe, 2002; Ullman 
et al., 2002; Wersing and 
Koerner, 2003; Serre et al., 
2007; Freeman and 
Simoncelli, 2011….

  Convolutional networks



Hierarchical feedforward models of the ventral stream 
 do “work”
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The same hierarchical architectures in the cortex, in 
the models of vision and in Deep Learning networks
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The same hierarchical architectures in the cortex, in 
the models of vision and in Deep Learning networks



When and why are deep networks better 
than shallow networks?


Why does SGD work so well for deep 
networks? Could unsupervised learning work 

as well?


DLNNs: two main scientific questions

Work with Hrushikeshl Mhaskar; 
initial parts with L. Rosasco and F. Anselmi



How do the learning machines described by classical learning theory -- 
such as kernel machines -- compare with brains?  

❑ One of the most obvious differences is the ability of people and 
animals to learn from very few examples (“poverty of stimulus” problem).  

❑ A comparison with real brains offers another,  related, challenge to 
learning theory. Classical  “learning algorithms” correspond to one-layer 
architectures. The cortex suggests a hierarchical architecture.  

Thus…are hierarchical architectures with more layers the answer to the 
sample complexity issue?  Notices of the American Mathematical Society (AMS), Vol. 

50, No. 5, 
537-544, 2003. 
The Mathematics of Learning: Dealing with Data 
Tomaso Poggio and Steve Smale 

Classical learning algorithms:  
“high” sample complexity and shallow architectures



Deep and shallow networks: universality

Cybenko, Girosi, ….

g(x) = ci
i=1

r

∑ < wi , x > +bi +



Classical learning theory and Kernel Machines  
(Regularization in RKHS)

For a review, see Poggio and Smale, The Mathematics of Learning,  
Notices of the AMS, 2003

Equation includes splines, Radial Basis Functions and 
Support Vector Machines (depending on choice of V).  
RKHS were explicitly introduced in learning theory by Girosi (1997), Vapnik (1998).

Moody and Darken (1989), and Broomhead and Lowe (1988) introduced RBF to 
learning theory. Poggio and Girosi (1989) introduced Tikhonov regularization in learning 
theory and worked (implicitly) with RKHS. RKHS were used earlier in approximation 
theory (eg Parzen, 1952-1970, Wahba, 1990).
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can be “written” as  shallow networks: the 
value of K corresponds to the “activity” of 
the “unit” for the input and the     
correspond to “weights”
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Classical kernel machines are equivalent to shallow networks



Deep and shallow networks: universality

Cybenko, Girosi, ….

g(x) = ci
i=1

r

∑ < wi , x > +bi +



Deep and shallow networks

g(x) = ci
i=1

r

∑ < wi , x > +bi +

•  Thus depth is not needed to for approximation 



Deep and shallow networks

g(x) = ci
i=1

r

∑ < wi , x > +bi +

•  Thus depth is not needed to for approximation 

•  Conjecture: depth may be more effective for certain classes 
of functions 



When is deep better than shallow

f (x1, x2,..., x8 ) = g3(g21(g11(x1, x2 ),g12 (x3, x4 ))g22 (g11(x5, x6 ),g12 (x7, x8 )))

Generic functions

Mhaskar, Poggio, Liao, 2016

f (x1, x2,..., x8 )

Compositional functions
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f (x1, x2,..., x8 ) = g3(g21(g11(x1, x2 ),g12 (x3, x4 ))g22 (g11(x5, x6 ),g12 (x7, x8 )))

Theorem: 
why and when are deep networks better than shallow network?

Mhaskar, Poggio, Liao, 2016
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When is deep better than shallow

f (x1, x2,..., x8 ) = g3(g21(g11(x1, x2 ),g12 (x3, x4 ))g22 (g11(x5, x6 ),g12 (x7, x8 )))

Theorem: 
why and when are deep networks better than shallow network?

Mhaskar, Poggio, Liao, 2016

Theorem (informal statement)
Suppose that a function of  d variables is compositional . Both shallow and deep 
network can approximate f equally well. The  number of parameters of the shallow 
network depends  exponentially on d as               with the dimension whereas for  
the deep network depends linearly on d that is  

O(ε −d )
O(dε −2 )



This is the  best possible estimate (n-width result)

Shallow vs deep networks

Mhaskar, Poggio, Liao, 2016



Similar results for VC dimension of 
shallow vs deep networks

Poggio, Anselmi, Rosasco, 2015



When is deep better than shallowTheorem

Mhaskar, Poggio, Liao, 2016

Suppose that a function of  d variables is compositional . Both 
shallow and deep network can approximate f equally well. The  
number of parameters of the shallow network depends  
exponentially on d as               with the dimension whereas for  
the deep network depends linearly on d that is  

O(ε −d )
O(dε −2 )

New Proof. Linear combinations of 6 units provides an indicator 
function; k partitions for each coordinates require 6 k n units in one 
layer. The next layer computes the entries in the 2D table corresponding 
to                 ; they also correspond to tensor products. Two layers with 
6kn + (6kn)^2 units represent one of the g functions. For convolutional 
nets total units is (l (6kn + (6kn)^2)) 

g(x1, x2 )
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• A classical theorem [Hastad, 1987] shows that deep circuits are more 
efficient in representing certain Boolean functions than shallow circuits. 
Hastad proved that highly-variable functions (in the sense of having high 
frequencies in their Fourier spectrum) in particular the parity function cannot 
even be decently approximated by small constant depth circuits

• The main result of [Telgarsky, 2016, Colt] says that there are functions 
with many oscillations that cannot be represented by shallow networks with 
linear complexity but can be represented with low complexity by deep 
networks.

Our theorem implies directly other known 
results



When is deep better than shallowCorollary

Mhaskar, Poggio, Liao, 2016

Our main theorem implies Hastad and Telgarsky theorems.

Use our theorem with Boolean variables. Consider the parity function                                          


which is compositional. Q.E.D

For the second part, consider for instance the real-valued polynomial


defined on the cube (-1, 1)^d. This is a compositional 
functions that changes signs a lot. Q.E.D.


                      

x1x2...xd

x1x2...xd



The curse of dimensionality, 
the blessing of compositionality



The curse of dimensionality, 
the blessing of compositionality

For compositional functions deep networks — but not 
shallow ones — can avoid the curse of dimensionality, 
that is the exponential dependence on the dimension 
of the network complexity and of its sample complexity.



Why are compositional functions 
important?

They seem to occur in computations on text, speech, 
images…why?

Conjecture (with Max Tegmark) 

The hamiltonians of physics induce compositionality in 
natural signals such as images
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Remarks


1. A binary tree net is a good proxy for ResNets 

2.Scalable algorithms and compositional functions 

4. Invariance and pooling 

6. Sparse functions and Boolean functions 



x1   x2   x3   x4 x5   x6   x7   x8

x1   x2   x3   x4 x5   x6   x7   x8

Convolutional Deep Networks (no pooling like in ResNets))

Similar theorems apply to the network on the left and the 
network on the right in terms of # parameters



x1   x2   x3   x4 x5   x6   x7   x8

Hyper deep residual networks:  
a binary tree net is a good mathematical proxy

∼



Remarks


1. A binary tree net is a good proxy for ResNets 

2. Scalable algorithms and compositional functions 

4. Invariance and pooling 

6. Sparse functions and Boolean functions 



Shift-invariant, scalable algorithms

Mhaskar, Poggio, Liao, 2016



• Images require algorithms of the compositional function 
type 

• Recognition in clutter requires computations  with 
compositional functions

Qualitative arguments for compositional functions 
in vision



Remarks


1. A binary tree net is a good proxy for ResNets 

2.Scalable algorithms and compositional functions 

4. Invariance and pooling: interpretation of nodes in binary tree 

6. Sparse functions and Boolean functions 



Comment on i-theory


• i-theory is not essential for today theorem; it represents s 
further analysis of convolutional networks and extensions of 
them 

• i-theory characterizes how convolution and pooling in 
multilayer networks reduces sample complexity (—>Lorenzo) 

• Theorems about extending invariance beyond position 
invariance and how to learn it from the environment (—> 
Lorenzo) 

Anselmi and Poggio, 2016, MIT Press



Remarks


1. A binary tree net is a good proxy for ResNets 

2.Scalable algorithms and compositional functions 

4. Invariance and pooling 

6. Sparse functions and Boolean functions 



Sparse functions

Mhaskar, Poggio, Liao, 2016



More remarks


• Functions that are not compositional/sparse may not be 
learnable by deep networks 

• Deep, non-convolutional, densely connected networks are 
not better than shallow networks; DCLNs can be much better 
(for compositional functions) but not for all functions/
computations 

•  Binarization leads to consider sparse Boolean function 



When and why are deep networks better 
than shallow networks?


Why does SGD work so well for deep 
networks?


DLNNs: two main scientific questions



Parenthetical comment on i-theory


• Convolution and pooling in multilayer networks reduces 
sample complexity 

• Theorems about extending invariance beyond position 
invariance and how to learn it from the environment 

Anselmi and Poggio, 2016, MIT Press


